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ABSTRACT ARTICLE HISTORY
Interpretation of remote sensing data for allocating of lithologic units and for mapping of ~ Received 26 March 2019
radioactive zones, supplies a valuable utility to produce Potential Radioactivity Map for the Revised 5 June 2019

uraniferous granite. The study applied a digital image processing technique including inter- Accepted 6 September 2019
pretation and manipulation of Geoph){sical Airborne gamma-ray spectrometry data an.d The KEYWORDS
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor image Image processing; ASTER;

data of Terra satellite over a case study well-known radioactive area of El-Missikat, El-Eridya airborne gamma-ray
and Kab Amiri areas in the Central Eastern Desert, Egypt. The possible forms of digital image spectrometry; uranium
manipulation are categorised into the following procedures: Minimum Noise Fraction (MNF) mineralisation; GIS; potential
rotation, colour composite, band ratios, Principle Component Analysis (PCA), decorrelation map

stretching and lIterative Self-Organising Data Analysis Technique Algorithm (Isodata) unsu-

pervised classification. Matched Filter (MF) classification was performed on the data to map

a chosen well- known alteration mineral association with the uranium occurrences from USGS

library. Each of these constructed images with the surveyed Airborne spectrometry data

(equivalent uranium) has been given a suitable weight to be integrated using Geographic

Information System (GIS) tools to delineate the most promising potential radioactive zones.

Moreover, the other comparatively and quantitatively goal of the study was to evaluate the

performance of various knowledge-driven mineral probability modelling.

1. Introduction Optimum Index Factor (OIF) is a statistical value
used to choose the optimum combination of
3-bands with the highest sum of standard deviations
and least amount of duplication of the data input to
produce a colour composite (Patel and Kaushal
2011). Statistical band selection relies on the fact
that not all image bands carry the same amount of
information and that adjacent bands in the spectral
domain are highly correlated. The OIF technique
simplifies that selection by quantitative evaluation of
the scene statistics and avoids the time consumption
of the visual analysis process of large numbers of
potential RGB combination (Beauchemin and Fung
2001). Matched Filter (MF) classification was per-
formed on the data to map a well- known chosen
alteration mineral associated with the uranium occur-
rences such as: Kaolinite, Illite, Haematite and
Chlorite, by matching endmember spectra of the
image and their spectra from USGS library.
Naturally occurring radioactive elements occur in
rock and soil near the earth’s surface. Three elements,
K, U and Th, are relevant to this research because
they or their daughter products emit gamma radia-
tion that can be measured by air-borne gamma-ray
spectrometer (AGRS) techniques (IAEA 1991).

Remote sensing discusses the technology of gaining
information about the earth’s surface and atmosphere
by spaceborne (satellites) or sensors on-board air-
borne (aircraft) platforms (Hellman and Ramsey
2004). The Advanced Space-borne Thermal
Emission and Reflectance Radiometer (ASTER) sys-
tem consists of three sub-systems: (1) Visible and
near infrared (VNIR) operating in 3 bands with
15 m spatial resolution; (2) Shortwave infrared
(SWIR) operating in 6 bands with 30 m spatial reso-
lution; (3) Thermal infrared (TIR) operating in 5
bands with 90 m spatial resolution. ASTER channels
make it the best spaceborne tool for geology since 6
spectral bands in the SWIR range, allowing the iden-
tification of carbonates and good discrimination
between alteration mineral, including clays and iron
oxides (Abrams 2000; Yamaguchi and Naito 2003;
Ninomiya et al. 2005).

Using MNF as a pre-processing technique to
increase the capability of extracting information
from ASTER data (Green et al. 1988; Shawky et al.
2019). Although, it is difficult to nominate the 3
bands that will give the best outcomes for extracting
lithological information from ASTER data, The
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Typically, the main component of gamma-ray flux is
contained within the upper 30 cm of the Earth’s sur-
face (Wilford 2002). The airborne gamma-ray spec-
trometry has specific three windows (channels) in
order to record the radiation emitted by the radio-
nuclides K*, U** and Th*** (IAEA 2003).
Geographic information systems (GIS) and image
processing systems can be used as powerful tools to
integrate gamma-ray images with other datasets such
those derived from satellite SPOT, Landsat TM or
ASTER sensors (El Arafy 2016). Although airborne
gamma-ray surveys cover large swaths of ground,
there are several limitations to this technique.
Furthermore, not all radioisotopes are in equilibrium
in surficial materials that emit gamma-rays collected
during airborne surveys. Therefore, gamma-ray data
for regolith mapping and radioelement exploration is
best used together with other datasets including satel-
lite remote sensing techniques (El Arafy 2016).

The current methods of mineral exploration utilis-
ing geophysical tools alone are expensive and time-
consuming; therefore, it is needed to exploit recent
tools of RS and GIS in the mineral exploration
(Arnous 2016). These tools are extremely fast and
effective in producing and modelling valuable data
in various environmental research and Geoscience
fields such as geology and geomorphology, and in
detecting and mapping the probable sites of the
minerals (Arnous 2016). Several radioactive
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anomalies with visible yellow secondary uranium
mineralisation along founded at the northern fringe
of G. El-Missikat and the southern fringe of G. El-
Eridiya plutons of the study area (Figure 1). These
anomalies are associated with highly brecciated grey-
ish black and red jasper filling fractures and shear
zones. The mineralised shear zones have specific
alteration features as silicification, hematitization
and kaolinisation (Abdelrahman 2014; Shawky et al.
2019). Discriminating alteration zones of kaolinite,
Illite, Haematite and Chlorite as the main types of
hydrothermally altered minerals using spectra
derived from the imagery and from the library of
the U. S. Geological Survey (USGS).

The areas that used as a case study area to apply
the techniques are El-Missikat-El-Eridiya-Kab Amiri
districts lies in the Central Eastern Desert of Egypt
(Figure 1). It represents an important example of
younger granites (monzogranite and syenogranite)
within the Arabian Nubian Shield. Airborne gamma-
ray spectrometry revealed that the syenogranitic
bodies have the highest radioactivity related to shear
zones usually filled with silica veins and an abnormal
radioactivity with visible uranium mineralisation they
are denser and closely spaced in the northern granitic
mass of G. El-Missikat than those at the southern
mass of G. El-Eridiya (Elsaid et al. 2014). Several
geological studies have been investigated the area
and showing its radioactivity importance (Ammar
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Figure 1. Location map of Egypt showing the selected areas of investigation.



1973; Bakhit 1978; El Tahir 1985; Abu Dief 1993; El-
Mansi 1993; Moghazi 2002; Gaafar and Aboelkhair
2014)

The aim of this study is to combine and to analyse
the previous generated spatial data layers (ASTER
imagery, Airborne gamma-rays and minerals’ reflec-
tance spectrometry) using mathematical and quanti-
tative data models and to produce potential
radioactivity zones for the discriminated uraniferous
granite of El-Missikat, El-Eridya and Kab Amiri areas
in the Central Eastern desert, that will assist in the
further mineral exploration and evaluation studies.
ASTER LI1B and Airborne gamma-ray spectrometry
data were integrated in this study.

2. Data and methods

The dataset in this study consists of ASTER level-1B
(L1B) and Airborne gamma-ray spectrometry data.
The case study area is located between 33.36066389
to 33.67515000 longitudes and 26.52412222 to
26.31346389 latitudes. ASTER data acquired on 7/
10/2007 and geocoded to the UTM projection
(WGS 84 - Zone 38 N). Radiometrically and geome-
trically corrected radiance at sensor ASTER LI1B
(Granule:  ASTL1B_071007_083611_080912_0036)
covers the whole region has been used in this study.

ASTER L1B data are registered radiance-at-the-
sensor product contains radiometrically calibrated
and geometrically co-registered data. Cross-talk cor-
rection was applied to the ASTER data using Cross-
talk Correction Software provided by Earth Remote
Sensing Data Centre (ERSDAC); to remove the effects
of energy leaking from band 4 into bands 5 and 9
(Gozzard 2006; Hashim et al. 2011; Van der Meer
et al. 2012; Wahi et al. 2013; Jing et al. 2014; Khaleghi
et al. 2014; Pournamdari and Hashim 2014;
Pournamdari et al. 2014; Kumar et al. 2015). Three
visible and near-infrared (VNIR) bands between 0.52
and 0.86 um and six short-wave infrared (SWIR)
bands from 1.6 to 2.43 um, were stacked, resampled
and registered to 15m resolution forming 9 bands
using the nearest neighbour method.

An airborne gamma-ray geophysical survey of the
study area was carried out by Aero-Service, Western
Geophysical Company of America, in 1984 desig-
nated as an area — IB (Aero Service Report 1984).
Airborne radiometric data measure the gamma-ray
flux above the earth’s surface, produced by the radio-
active decay of Uranium, Thorium and Potassium.
Airborne data projected to Egypt Red Belt Transverse
Mercator, Helmert 1906. Such that Latitude of nat-
ural origin is 30°, Longitude of natural origin is 31°,
False easting is 615000m and False northing is
810000m; then rasterized and spatially resampled to
a 15m resolution to be compatible with ASTER data.
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The airborne radiometric data were processed to
show the distribution of Uranium (eU), Thorium
(eTh) and Potassium (*°K) in the study area.
Airborne radiometric data are suitable for geological
research and mineral exploration. Aerial gamma-ray
surveys easily detect Granites; The method may not
directly identify mineralisation but can act as an
auxiliary method in locating potentially mineralised
systems (Hyvonen et al. 2005).

ENVI 5.3 and IDL 8.5, MATLAB R2016b and
ArcGIS 10.5 software were used to process the
ASTER imagery and Airborne data, and preparation
of GIS layers respectively. Figure 2 represents the
steps of the proposed processes as a logistic concep-
tual model.

2.1. ASTER data

As a preprocessing procedure for ASTER L1B, radi-
ance data were atmospherically corrected and con-
verted to surface reflectance using Internal Average
Relative Reflectance (IARR).

2.1.1. Minimum noise fraction (MNF)
MNF is a preprocessing and transformation techni-
que for denoising image data. It transforms noisy
data into components with decreasing noise fraction.
The Minimum Noise Fraction (MNF) transform is an
algorithm involving two successive data reduction
operations. The first is based on an evaluation of
noise in the data characterised by a correlation
matrix. MNF transformation decorrelates the data
and rescales the noise in the data, by variance.
The second accounts for the original correlations,
and produces a set of components that have weighted
information concerning the variance through all
bands in the original data set. The algorithm pre-
serves specific channel information for each compo-
nents’ weighting of all original bands. The first few
surface reflectance variations of MNF bands contain
signal, while the remaining bands contain noise
(Green et al. 1988; Vermillion and Sader 1999).
MNF transforms bands from the original space to
eigenspace. The data space can be represented as two
parts: one-part accompanying with large eigenvalues
and coherent eigenimages, and the other part with
near-unity eigenvalues and noise-dominated images.
By using the coherent portions only, separating noise
from the data, hence improving spectral processing
results (Vermillion and Sader 1999; Hashim et al.
2011; Berman et al. 2012; Lasaponara and Masini
2012; Pour and Hashim 2012; Frassy et al. 2013).
Bands with eigenvalues’ value less than 2 were con-
sidered as a noise and then transform the MNF bands
back to their original data space without noise band-
(s) (Shawky et al. 2019).
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Figure 2. Steps of the proposed processes.

2.1.2. Band rationing (BR)

BR is a type of image enhancement. A Band ratio
image is produced by dividing the corresponding
digital number (DN) values of two bands and dis-
playing the result as a greyscale image (Madani and
Emam 2011; Pournamdari et al. 2014). Using band
ratio images is better than using only individual
bands to define and distinguish certain features that
cannot be discriminated on a single band. All combi-
nations of band ratios between the 9 bands are pro-
duced in a correlation matrix in three images. The
first image contains all band ratios (36 bands) where
the higher band number over the lower one (ex. B7/
B5); the second image (36 bands) contains the lower
over the higher band number (ex. B4/B9); and the last
image contains all the band ratios (72 bands) con-
tained in the previous two images.

2.1.3. Principle component analysis (PCA)

PCA is a linear transformation to reduce such infor-
mation redundancy in multispectral images; which
decorrelates multivariate input data by rotating and/
or translating the axes of its original space, so that the
data can be exemplified without correlation in a new
space that should be capable to identify different
features and surface types easier. In order to apply
this: (i) the covariance matrix amongst all input spec-
trum bands was computed, then (ii) eigenvalues and
eigenvectors were produced with the purpose of
obtaining the new feature components. PCA is useful
for enhancing the information content, segregating
signal from noise, and reducing the dimensionality
of datasets (Patel and Kaushal 2011; Lasaponara and
Masini 2012; Liu and Mason 2013; Pournamdari et al.
2014; Kumar et al. 2015). Since the eigenvectors and



eigenvalues are computed from the covariance
matrix, the PC transform maximises the data variance
in the first few PC bands, these bands contain the
greatest amount of the coherent image information
and they can be used to isolate common features in
the data. Often, higher-order PC images contain rare
features and/or noise (Kumar et al. 2015).

2.1.4. Optimum index factor (OIF)
OIF is a common statistical method which was
used to specify the best three band combinations
and rank the bands according to their statistical
information. It is based on the quantity of the
total variance and correlation between various
bands (Patel and Kaushal 2011; Pournamdari
et al. 2014). Chavez et al. (1982) define a formula
to calculate OIF by using three standard deviations
and three correlation coeflicients. The optimum
combination of all possible 3-band combinations
has the highest amount of information (= greatest
sum of standard deviations), with the least amount
of duplication (= lowest correlation among band
pairs) (Ren and Abdelsalam 2001; Van der Meer
et al. 2012; Bhattacharjee 2013).

For each combination of three bands, the OIF is
calculated as (Patel and Kaushal 2011; Pournamdari
et al. 2014; Jakob et al. 2015):

Std; + Stdj + Stdy

OIF =
‘Corri,j| + ’Corrj,k| + |Corriy|

Where Std; is the standard deviation of band i,

Std; is the standard deviation of band j,

Stdy is the standard deviation of band k,

Corr;; is the correlation coefficient between bands
iandj,

Corrjy is the correlation coefficient between bands
j and k,

Corrj is the correlation coefficient between bands
iand k.
Such that: N

Standard Deviation (Std): o, = %2 (% — x)?

i=1

where Nis the number of points and x-bar (%) is
the mean.

Correlation Coefficient: Corr,, = Co;xfj;'y )

Where o, and oy represent the standard deviation
of x and y respectively; N o
Covariance: cov(x,y) = W
Such that: Cov(x,y) shows how two variables are

related.

2.1.5. Decorrelation stretches

It is a method of image enhancement, which
enhances the colour saturation of a colour composite
image and thus effectively improves the visual quality

NRIAG JOURNAL OF ASTRONOMY AND GEOPHYSICS @ 189

of the image spectral information, without significant
distortion of its spectral characteristics (Chang 2003;
Liu and Mason 2013).

2.1.6. Image classification

It uses imagery to produce thematic maps. The goal
of classification is to identify characteristic features,
patterns or structures within an image and use these
to assign them to a particular class (Chang 2003;
Schott 2007; Solomon and Breckon 2011;
Lasaponara and Masini 2012; Karakus and Karabork
2016). Unsupervised classification is accomplished
without any previous knowledge of the image.
ISODATA method group pixels into a pre-defined
number of classes depending on their reflectance
features. ISODATA calculates class means regularly
circulated in the data before iteratively clusters the
continuing pixels using least distance approaches.
Every iteration recalculates means and reclassifies
pixels according to the new recalculated means,
Isodata automatically adjusts the number of clusters
during the iteration by splitting clusters which have
large standard deviation values and merging similar
clusters (Abbas et al. 2016).

2.1.7. Matched filtering (MF)

MF technique was used as a signature target detection
to find the profusions of user-defined endmembers
and to help distinguish targets from background for
mineral exploration. Multispectral imaging provides
significant information about the spectral character-
istics of materials in the surface of the Earth. Due to
high spectral resolution, each pixel (deemed as
a vector) can be seen as a “fingerprint” of the funda-
mental materials within the spatial point. Based on
the spectral signatures, imaging has the extraordinary
possibility to recognise small targets of interest. The
targets are mainly man-made objects or objects with
signatures being spectrally distinctive from image
background, which are mostly embedded in a single
pixel area and cannot be straightforwardly recognised
by visual inspection. The major objective of target
detection is to detect these targets by exploiting the
spectral signatures of the materials (Gao et al. 2015).
MF technique maximises the response of the known
endmember and minimises the response of the
unknown background, therefore matching the
known signature; based on matches to spectral library
or image endmember spectra and does not necessitate
knowledge of all the endmembers within the image
(Shawky et al. 2019). Choosing Kaolinite, Illite,
Haematite and Chlorite to illustrate hydrothermal
alteration zones; as the implanted pure target, whose
standard spectrum was from the U.S. Geological
Survey (USGS) Spectral Library and were then
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Figure 3. The spectra of the studied minerals from the USGS
library.

resampled to match ASTER multispectral signatures.
Figure 3 shows the spectra of the studied minerals
from the USGS library. Matched Filtering technique
was applied to the composite image after using MNF
and removing the noise.

2.2. Airborne data

The preprocessing steps of airborne gamma-ray
radiometric digital data are as follows:

(a) Rasterizing each element of eU, eTh, K and
total count (TC) to convert the text data to an
image file.

(b) Resampling and projecting the product images
to Red Belt Projection with a pixel size
15x15m.

(c) Merging the four elements’ images into one
multi-bands image that can be manipulated
and processed as an ordinary image.

These processes were essential to attain compat-
ibility and coincidence between the different layers
that can be extracted from ASTER and Airborne data
and can be easily used in GIS modelling and techni-
ques in a combination with the other layers.

2.3. Geographic information system (GIS)

GIS has gained increasing importance in the analysis
and integration of spatial data layers. GIS provides
a number of useful methodologies for viewing, orga-
nising, query, combining, analysing, estimating, eval-
uating and supporting decision-making(Kayadibi and
Aydal 2017). Data-driven approaches require suffi-
cient training data to represent well the spatial rela-
tionships between mineral formations and evidence

maps. Knowledge-driven approaches can be used in
areas where under-worked and known minerals are
less or not sufficient as in the case of the present
study area. These approaches are based on the expert
opinion according to the conceptual model defined or
the ore deposit model (Kayadibi and Aydal 2017).
The predictive modelling methods include; weighted
sum, weighted overlay and fuzzy logic.

Both Weighted sum and Weighted overlay weight
combine multiple inputs to produce an integrated
image; higher values indicate that a location is more
suitable. The main difference is that Weighted Sum
does not rescale the reclassified values to an evalua-
tion scale and allows integer and floating-point
values, while Weighted overlay allows only integer
values (ESRI 2016; Kayadibi and Aydal 2017).

Fuzzy logic is an overlay analysis technique. It
supposes that there are inaccuracies in the geometry
and attributes of spatial data, that is inaccuracies of
class boundaries. The Weighted Sum and Weighted
Overlay tools are based on crisp sets, such that each
cell belongs to a class or not. Fuzzy logic addresses
states when the boundaries of classes are not clear;
therefore, it defines possibilities, not probabilities
(ESRI 2016). Fuzzy logic reclassifies the original
values to the possibility that they belong to
a defined set between 0 and 1 through MS Large
function, where it depends on a specified mean and
standard deviation. The midpoint is defined as
a membership of 0.5 and the other values with greater
or lower value compared with it which has higher or
lower possibility of being a member of the set. The
Fuzzy Overlay permits the study of the possibility of
a member belonging to multiple sets in a multi-
criteria overlay analysis (ESRI 2016; Kayadibi and
Aydal 2017). Fuzzy Operators are:

e Fuzzy And: returns the minimum value of the
sets.

Fuzzy And Value = min (arg,, ..., arg,)

e Fuzzy Or: returns the maximum value of the
sets.

Fuzzy Or Value = max (arg,, ..., arg,)

e Fuzzy Product: multiplies each of the fuzzy
values for all the input criteria for each cell. It
is difficult to correlate the result to the relative
relationship of the values.

Fuzzy Product Value = product (arg;, ...,
arg,)

e Fuzzy Sum: adds the fuzzy values of each set.

Fuzzy Sum Value = 1 - product (1 - arg,
. 1 —arg,)

® Fuzzy Gamma:

It is a mathematical product of fuzzy Product
and fuzzy Sum, such that both are raised to the
exponential of gamma. If the specified gamma is 1,



the output is equal to the fuzzy Sum; if gamma is 0,
the output is the same as a fuzzy Product.
Fuzzy Gamma Value = pow ([1 - ((I1 - arg;) *
(1 -arg) *...)], Gamma) * pow ([arg; * arg,
*...], 1 - Gamma).

3. Results and discussion

In this research study, ASTER L1B data were atmo-
spherically corrected and converted to surface reflec-
tance using IARR. Then, MNF transformation was
applied to evaluate the noise in the data by trans-
forming data images from normal space to eigen-
space. MNF 1 represents the greatest variation while
the smallest amount (1.5985) is noted at MNF 9.
Most of the information (99.11%) of the total varia-
bility is obtained in the first 8 MNFs. Thus, MNF 9
will be essentially noises and need to be removed.
Therefore, transform the MNF bands (MNF 1 to
MNF 8) back to their original data space without
MNEF 9 to exclude the noise.

3.1. Conventional image processing techniques

The output ASTER data have 9 bands in VNIR and
SWIR; the number of possible combinations of the
three bands is determined as:

(5) s

Where N is the total number of bands; for the 9
bands, there are 84 combinations. OIF was calculated
to compare between these combinations by ranking
and sorting them from best to worst. The best 3-band
combination of the colour composite image has been
found bands 3, 7 and 8.

OIF was applied also to both Band Ratio Images
created of ASTER data, and PCA of ASTER and
Airborne gamma-ray images data. For the band ratios,
all band combinations (36 bands) has been applied. In
order to apply OIF, the number of possible 3 band
combinations of 36 bands is 7140 combinations; OIF
was calculated for these combinations. While for 72
bands there are 59,640 combinations which consid-
ered too big to be calculated and time consuming. The
best 3-band combination of the band ratio image has
been found 5/3, 8/1 and 9/4 to illustrate and identify
the granitic rocks in the area. PCA for ASTER and
Airborne gamma-ray images data has been produced.
OIF was computed on the output results and the best
3-band combination of ASTER has been found PC 1, 2
and 9. These combinations are predictable to have the
maximum amount of extractable lithological informa-
tion for visual interpretation since they use bands with
the least amount of redundancy in the remotely sensed
data (Beauchemin and Fung 2001). After choosing the
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best 3-band combination of the processed data, dec-
orrelation stretch was taken place as a process that is
used to enhance the colour differences in the colour
image; by removing the correlation of the input pixels.
To categorise all pixels of giving the image into
classes; an image classification technique was used.
Isodata unsupervised classification algorithm takes
place to automatically groups the pixels into
unknown or non-predefined classes. Choosing the
appropriate parameters depended on experiment
and how long consume in time of operation. The
specified parameters used in this study was:

e Number of Classes from 5 to 10

¢ Minimum number of pixels in each class = 300
000

e Maximum class standard deviation = 1

e Minimum class distance = 100

e Maximum number of merge pairs = 5

e Maximum iterations = 10

e Threshold = 0.005

At this step, after a decorrelation stretch and Isodata,
we have three outputs classified images that success-
fully showed the best discrimination for the granitic
rocks’ exposures and its alterations in the study area
(Figure 4):

e RI: for the 3-bands (3,7,8) composite of the
original image after removing noise, - R2: for
the 3-bands (5/3, 8/1, 9/4) composite of band
ratio image, — R3: for the 3-bands (PC1, PC2,
PC9) composite of PCA image.

3.2. Airborne spectrometry technique

The airborne gamma-ray spectrometric digital data (as
text file contains 6 columns which represent X and
Y coordinates, eU, eTh, K% and TC distribution) were
converted to image format by rasterizing the point data.
These images showed the intensity distribution of TC,
eU, eTh (in ppm) and *’K (percentage).

The resampling process was essential to guarantee
the coincidence between the different layers that could
be extracted from data (Airborne and ASTER).
Combine the 4 distribution images into 1 image, com-
pute PCA, then identify the best 3-bands combination
using OIF. The best 3-bands combination of Airborne
has been founded PC 1, 3 and 4 which represent U,
K and TC. After that, apply decorrelation stretch and
Isodata processes to the output image to classify the
regions of fertile granites. Using the threshold (99%,
95% and 68%) to classify the distribution image for eU
to produce a region of interest (ROI) which define the
localisation of fertile granites in the area. The outputs of
this step were (Figure 5):
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Figure 4. The output image layers: (a) Colour composite image R1, (b) Band ratio image R2, (c) PCA of ASTER image R3.
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Figure 5. The output image layers: (a) Uranium distribution image from Airborne R4, (b) PCA of Airborne images R5.

® R4 represents ROI of eU in the study area, - R5
for the 3-bands (PC_U, PC_K, PC_TC) compo-
site of PCA image.

3.3. Mineral spectral mapping

The last input parameters for the evaluation to
produce the potentiality map for the fertile granite
and radioactive zones in the study area was to map
the minerals associated with the uraniferous gran-
ite. Each mineral has its own characteristic spectral
absorption and reflection features. In this study, the
used minerals are Kaolinite, Haematite, Illite and
Chlorite. Using USGS library spectra to identify the
high and low reflectance bands for each mineral in
VNIR-SWIR bands of ASTER satellite data. The
proposed minerals association was chosen accord-
ing to the previous studies and observations in the
area as the main association for the uranium
mineralisation (El-Mansi 1993; Moghazi 2002;

Abdelrahman 2014; Elsaid et al. 2014; Gaafar and
Aboelkhair 2014). Matched Filtering (MF) algo-
rithm was used to identify the alteration zones of
the selected minerals using the USGS mineral refer-
ence spectra.

The results of this step were (Figure 6):

e R6 distribution of Kaolinite, — R7 distribution of
Illite, — R8 distribution of Haematite, — R9 dis-
tribution of Chlorite.

As a result, at the final stage, nine different input (para-
meters) layers (R1 to R9) have been distinguished. All
layers are compatible and coincidence to be transferred
to GIS environment at the following stage.

3.4. Potential radioactivity map

All the previous output layers (parameters) from the
different techniques and processes for both ASTER and
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Figure 6. The output image layers: (a) Distribution of Kaolinite image R6, (b) Distribution of Illite image R7, (c) Distribution of

Haematite image R8, (d) Distribution of Chlorite image R9.

Airborne data were reclassified and assigned ranks and
weights (Figure 7 and Table 1). In this process, the
thematic layers were ranked depending on the informa-
tion embedded in each. The rank and weight of these
layers were derived from the effects of each contribution
approved to expert opinion based on the characteristics
of the ore formation and identification criteria deter-
mined by the conceptual model. The order was set as the
higher contribution to the target of radioactivity zones.

The weight of each layer has been calculated as the
rank of it divided by the total number of ranks. Each
layer classified into two to four classes: very high, high,
moderate, and background. Similarly, the classes in each
input layer were categorised and ranked from 0 to 3;
where 3 is the best and 0 is the background; based on the
ability to reserve data. The capacity value of data of each

subclass was computed from the multiplication of the
rank of it and the weight of its layer, then divide the result
over the total ranks of classes.

A predictive mineral modelling process is performed
by combining and analysing predictive layers using
a function that characterises the interaction and relation-
ships between the layers and the processes controlling the
mineralisation system using three methods from knowl-
edge-driven modelling approaches (Kayadibi and Aydal
2017). These methods include: weighted sum, weighted
overlay and fuzzy logic. All of these output raster layers
were used as a data layer in a GIS modelling and were
used to predict the potential radioactivity map. Figure 7
represents the potential map correlation flowchart.
Figure 8 shows the output potential maps from the
different methods.

—————
9 Input layers

Reclassification for
output results

ull

| | Weighted Sum | |

| |Weighted Overlay | |

if more than 2 cl Yes

I IFuzzyMembership[ I

No Mslarge Type
3 _
And Or Sum product gamma

Figure 7. The potential map correlation flowchart.
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Table 1. The thematic layers’ weights and their capacity values.

Order Name Rank Weight Classes Class Rank Capacity value
1 PCA of Airborne 22 0.22 1 Background 0 0
2 Moderate 1 0.03667
3 High 2 0.07333
4 Very high 3 0.1
Sum 6 0.22
2 Airborne eq. Uranium 20 0.2 1 Background 0 0
2 Moderate 1 0.03333
3 High 2 0.06667
4 Very high 3 0.1
Sum 6 0.2
3 PCA of ASTER 15 0.15 1 Background 0 0
2 High 1 0.15
Sum 1 0.15
4 Band Ratio 10 0.1 1 Background 0 0
2 High 1 0.1
Sum 1 0.1
5 Kaolinite 7 0.07 1 Background 0 0
2 Moderate 1 0.02333
3 High 2 0.04667
Sum 3 0.07
5 llite 7 0.07 1 Background 0 0
2 Moderate 1 0.02333
3 High 2 0.04667
Sum 3 0.07
5 Haematite 7 0.07 1 Background 0 0
2 Moderate 1 0.02333
3 High 2 0.04667
Sum 3 0.07
5 Chlorite 7 0.07 1 Background 0 0
2 Moderate 1 0.02333
3 High 2 0.04667
Sum 3 0.07
6 Band composite 5 0.05 1 Background 0 0
2 Moderate 1 0.01667
3 High 2 0.03333
Sum 3 0.05
Sum 100 1 1
b 33'25'0'E '30'0"E ‘3S'0"E

26:250'N

26'300°N

26'25'0°R

26°21

33'300°E
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Figure 8. The final potential maps output from the different methods.



The Weighted sum method produces potential
radioactivity map for the uraniferous granite of
Egypt confirmed by the previous studies. Where it
shows uraniferous granite location at North of El-
Missikat, North of El-Eridya and South of Kab
Amiri areas in the Central Eastern desert.

Gamma (y) value was selected as 0.7 and 0.9 for
the combination of the input layers using the Fuzzy
Gamma operator. Nevertheless, the results were
found very poor.

Fuzzy Or method gives good results in discrimina-
tion of fertile granites in the area when it runs without
fuzzy membership transformation. On the other hand,
Fuzzy Sum without fuzzy membership transformation
recognises the mineralisation areas. While the other
methods did not give representative results. The output
images will lead the delineation of target areas, the
identification of new targets for mineral exploration,
evaluation work and radioactive deposit exploration.

4. Conclusion

The study applied an integration of the processed air-
borne gamma-ray spectrometry and satellite remote
sensing data in a GIS environment to produce radio-
active maps for The Uraniferous Granite in the study
area. ASTER L1B data were atmospherically corrected
and converted to surface reflectance using IARR
method which is a useful method for the purposes of
geological exploration. MNF transformation was used
to eliminate the noise in the data with eigenvalue less
than 2. A set of conventional image processing techni-
ques and methods has been performed on data such as
band ratios, PCA, OIF and unsupervised classification.
Band ratio was created and used as an image enhance-
ment to distinguish certain features that cannot be dis-
criminated on a single band. PCA performed on data to
reduce information redundancy in the images.
Therefore, the data can be represented without correla-
tion in a new space to identify and distinguish different
surface features clearly. OIF applied as a statistical
method to specify the best three band combinations
and rank the combinations according to highest stan-
dard deviations and lowest correlation coefficients
between bands. ISODATA Unsupervised classification
was used to produce thematic maps. ISODATA algo-
rithm is iterative procedures to automatically groups
the pixels into unknown or non-predefined classes
based on specified parameters like the minimum class
distance value, the standard deviation within each class
and the distance between classes centres.

The study demonstrates the results and impor-
tance of airborne radiometric as well as the suitability
of remote sensing technique and GIS for exploration
for radioactive materials. GIS model was used to rank
and weight the output thematic layers depending on
the information embedded in each. A predictive
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mineral modelling process is performed by combin-
ing and analysing the ranked layers to characterise
the interaction and relationships between the layers
using weighted sum, weighted overlay and fuzzy logic
(fuzzy logic includes Fuzzy-and, Fuzzy-or, Fuzzy-
product, Fuzzy-sum and Fuzzy-gamma) methods to
output potential maps for the most promising areas
that identify uraniferous granite. Weighted sum,
Fuzzy-or and Fuzzy-sum grant the best outcomes.
The results showed higher potentiality in areas of
north El-Missikat, North of El-Eridya and South of
Kab Amiri. On the other hand, the results showed
moderate to low potentiality in areas of southeast El-
Missikat, west El-Eridya and north of Kab Amiri
areas. In addition to locations of the mineralisation
areas.

The study proposed a detailed flowchart technique
and processes for producing a potential radioactivity
map in the study area and areas with similar condi-
tions (arid - semi-arid regions). The output images
and layers will guide the delineation of target areas in
a broad search area, the identification of new targets
for future detailed mineral exploration and evaluation
work, and the study for new mineral deposit
exploration.
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