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ABSTRACT
We investigate the time series of solar wind parameters (interplanetary magnetic field, Bz and
solar wind speed, Vx) and geomagnetic indices (disturbance storm time, Dst and auroral
electrojet, AE) using wavelet analysis and nonlinear dynamics time series techniques. The
data were collected from the Flight Center Space Physics Data Facility (GSFC/SPDF)
OMNIWEB interface between 2008 and 2017. Wavelet power spectrum (WPS) analysis assists
in breaking down the time series of Bz, Vx, Dst and AE parameters into different scales. It was
noted that there is a greater concentration of power between the 512 and 1024 months bands
across the Bz, Vx, Dst and AE parameters. We also applied non-linear time series modelling
methods to examine the Bz, Vx, Dst and AE parameters. We utilised both the time delay and
embedded dimension in computing average mutual information (AMI) and false nearest
neighbors (FNN), respectively. The Lyapunov exponent (LE) is used to express the complexity
of the nonlinear dynamics based on embedding parameters. The Lyapunov exponents depict
positive values which confirm that the complex solar wind parameters and the geomagnetic
indices are deterministic chaotic systems. The results show noticeable chaotic characteristics in
the Bz, Vx, Dst and AE parameters.
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1. Introduction

Interplanetary medium variations are caused by solar
wind parameters such as variation in flow speed, flow
pressure, density, temperature and interplanetary mag-
netic field (IMF). These variations create geomagnetic
disturbances in the magnetospheric and ionospheric
current systems. The expulsion of energetic-charged
particles intersecting with the Earth’s trajectory can
have a serious influence on the Earth’s magnetosphere.
The magnetospheric activity is triggered by the interac-
tion between the geomagnetic field and the solar wind,
which results into geomagnetic storms, turbulence,
ionospheric currents, auroras, and magnetic reconnec-
tion, which are quantified by the global magnetospheric
indices. The geomagnetic indices, AE (auroral electro-
jet), Dst (disturbance storm time), Kp and Ap (plane-
tary indices) depict the intensity of the storm time
geomagnetic perturbation of the Earth magnetosphere.

In this research, numerical tools such as chaos tech-
niques and wavelet transformation are employed to
understand the dynamics of natural time series. The
chaos theory offers the most recent way to describe the
unknown facts in random-like data. Chaotic techniques
are used to recognise deterministic components, which
are varied with other stochastic components in the data.
Numerous fields are making use of chaos (nonlinear)
techniques because of applicable mathematical models
are readily accessible for quantifying and demonstrating

nonlinear fluctuations in time-series data, for example,
climate and weather forecast (Sharma and Veeramani
2011; Jani et al. 2014; Fuwape et al. 2016; Suresh and
Selvaraj 2017), prediction of sunspot (Ossendrijver
2003; Rüdiger and Hollerbach 2004; Zivkovic and
Rypdal 2011; Gkana and Zachilas 2015; Sarp et al.
2018), astronomy (Hanslmeier and Brajša, 2010),
hydrology (Sivakumar 2000, 2004; Elshorbagy et al.
2002; Yang et al., 2011). The idea of chaos is applied to
ionospheric and magnetospheric studies during the
quiet and turbulence situation using time series analysis
(Chen and Sharma 2006; Rabiu et al. 2014; Ogunsua
et al. 2014; Oludehinwa et al. 2014). Unnikrishnan and
Ravindran (2010) used chaos techniques to examine the
study chaoticity of equatorial and low latitude iono-
sphere over the Indian subcontinent during geomagne-
tically quiet and disturbed periods. Unnikrishnan
(2010) investigated the GPS TEC variation over the
mid-latitude region of Japan and equatorial/low latitude
regions of India using nonlinear time series.

Also, wavelet power spectrum (WPS) have been
widely used in numerous-related fields (Beltrán and
Ponce de León 2010; Hafez et al. 2010; Mandrikova
et al. 2010, 2011, 2012a, 2012b, 2012c, 2013; Hafez and
Ghamry 2011; Liming et al. 2011; Ghamry et al. 2012;
Gwal et al. 2012; Bakhshi et al. 2013; Castillo et al.
2013; Han and Chang 2013). WPS present facts on the
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amplitude of phase signals during the time series and
how its amplitude changes with time. WPS is used to
investigate irregular time series and to reveal the short
occurrence inside the time series. Wavelet transforma-
tions determine complex analysis by breaking down
and changing from a dimensional time series into two-
dimensional time-frequencies domain. Torrence and
Compo (1998) recognised that wavelet transforms
allow recognition of the major periodicities in a time
series and it is used to examine the development of
each frequency. At a particular frequency, the wavelet
spectrum offers qualitative facts about the power pre-
sent in each time series. Falayi et al. (2017) used the
wavelet power spectrum to investigate the geomag-
netic storm of 17 March and 22 June 2015 during the
solar cycle 24 over the selected station at Addis Ababa,
Mbour, Hermanus, Hartebeesthoek and Tamanrasset
the equatorial and mid-latitudes of Africa. Also, the
geoelectric field of the horizontal variation was studied
during 2003 events at Abisko, Nurmijarvi, Sodanklya,
and Uppsala using wavelet power spectrum (Falayi
et al. 2018). It was noted that high-latitude stations
exhibit high geoelectric field variations for the period
of the disturbance caused by a coronal mass ejection.

In this research, we examine solar wind compo-
nents (solar wind, Vx, and interplanetary magnetic
field, Bz) and geomagnetic indices (Disturbance
storm time, Dst and auroral electrojet, AE) from
2008 to 2017 using nonlinear time series and wavelet
power spectrum techniques. This paper is structured
as follows. Section 2 describes the observational data
used in this study. Besides, this section examines the
wavelet power spectrum analysis and nonlinear
dynamics time series of the Bz, Vx, Dst and AE. In
Section 3, the wavelet spectrum approach and the
time-dependent dynamical complexity of the coupled
solar wind-magnetosphere system for the Bz, Vx, Dst
and AE are discussed. Section 4 summarises the find-
ings with the concluding remarks.

2. Data and methods

Here, we analyse the solar wind parameters (solar wind
speed, Vx and interplanetary magnetic field IMF, Bz)
and geomagnetic indices (disturbance storm time, Dst
and auroral electrojet, AE). The 1-hour resolution data
used were obtained from the Flight Center Space
Physics Data Facility (GSFC/SPDF) OmniWeb
(http://omniweb.gsfc.nasa.gov) interface between 2008
and 2017. The AE index shows the activity of the
electrojet in the auroral region (Davis and Sugiura
1966). The AE index reveals the irregularities con-
nected with magnetospheric dynamics as a result of
solar wind variation. Consequently, AE index is
known to correspond to the dynamics of the magneto-
spheric system (Hajkowicz 1998). The Dst measures

the intensification of the ring current and it is widely
applicable in different research areas on the solar wind-
magnetosphere coupling particularly during geomag-
netic storms (Mayaud 1980). The Vx shows the strong
point of the geomagnetic disturbance. The Bz is the
interplanetary magnetic field which tends southward as
an indication of the geomagnetic storms.

2.1. Wavelet power spectrum analysis (WPS)

The main benefit of the WPS investigation technique is
to give facts about the frequency of the occurrence in
relation to its locality in the time series. The WPS is
produced by enlargement, Ψ tð Þ ! Ψ tð Þ, and transla-
tions Ψ tð Þ ! Ψ t þ 1ð Þ with respect to time t. The
mother wavelet is expressed in Equation (1) as:

Ψa;bðtÞ ¼ a
1
2ψ

t � b
a

� �
; (1)

where a correspond to the scale related to increase and
reduction from the wavelet and b symbolise the time
localisation. Equation (2) is expressed as Morlet wave-
let (Torrence and Compo 1998):

ΨðtÞ ¼ eiwotffiffiffi
π4

p
e
t2
2

; (2)

where wo is the dimensionless frequency. The use
WPS on x tð Þ time series is referred to as the convolu-
tion of the data series of the Morlet wavelets in
Equation (3) (Kumar and Foufoula-Georgiou 1997;
Torrence and Compo 1998):

WPSða; bÞ ¼
ð1

�1
xðtÞΨ�

a;bðtÞdt; (3)

where Ψ�
a;b tð Þdenotes as the conjugate of wavelet func-

tion Ψa;b tð Þ. The expression of the wavelet coefficient at
time index n and scale a is expressed in Equation (4):

WPSnðaÞ ¼
XN�1

nl¼0

xðnlÞψ � ðnl � nÞdt
a

� �
; (4)

where N is the length of the data time series and dt
represents the time interval. The scale-averaged WPS
is used to examine variation in power over a band of
scales given in Equaation (5) (Torrence and Compo
1998):

W2
n ¼ @j@t

0:776

Xj2
j¼j1

jWðajÞj2
aj

: (5)

The global wavelet spectrum (GWS) is employed to
recognise the most energetic phase present on the
cross-wavelet analysis. The GWS is expressed in
Equation (6):
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GWS ¼
ð
jWPSða; bÞj2db: (6)

Figures 1(a–d)–4(a–d) depict the wavelet power spec-
trum analysis to estimate the time-frequency charac-
teristic of the solar wind parameters (Bz, Vx) and
geomagnetic indices (Dst, Kp and AE) variation
between 2008 and 2017.

2.2. Time series analysis

2.2.1. Detrend of data analysis
A statistical technique of eliminating trend from the
time series data is referred to as detrending. Detrending
is regularly used to eliminate a characteristic thought to
alter the relationships of concerned parameters. In this
research, since our attention is to study complexities in
a rapidly fluctuating data set, it is necessary to eliminate
long term or seasonal trends, so that we can analyse the
basic variations in the recorded time series data (see
Figure 5). It is also used as a preprocessing stair to

arrange time series for analysis of techniques that
assume stationarity. In this section, certain detrending
procedures are applied as the only preprocessing stairs.
In this approach, a straightforward additive superposi-
tion of trend and variability time series can be break
down as: y(t) = T(t) + r(t), where r(t) represents resi-
dual, variability around the trend T(t). The variation
components can posses both the stochastic and deter-
ministic components.

2.2.2. Techniques of nonlinear dynamics time series
To investigate the chaotic time series of Bz, Vx, Dst
and AE indices, we evaluate the average mutual infor-
mation (AMI), false nearest neighbour (FNN),
Lyapunov exponent and phase space construction.
We seek to obtain a suitable embedding dimension
(m) that is required to reconstruct phase space. The
structure can be described by the embedding dimen-
sion. Phase spaces reconstructions are derived from
the changes in the coordinates and it explains the time
progression. The techniques of delays are applied to

Figure 1. (a) Vx data from Ominiweb observatory for 2008–2017. (b) Wavelet power spectrum of Vx index between 2008 and 2017,
with concentration of power between 512 and 1024 months. (c) GWS, while the breaking lines symbolise significance level of 5%
(d). The broken lines in scale-average time series symbolise confidence level of 95% for Vx.
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reconstruct phase space and this can be the most
significant in phase space reconstruction system. The
phase space reconstruction assists to make known the
multidirectional feature of the structure and rely on
the embedding theorem. The phase space is recon-
structed to demonstrate the multidimensional struc-
ture which is expressed in Equation (7):

TðnÞ ¼ fXn;Xnþτ;Xnþ2τ; � � � ;Xnðm�1Þτg; (7)

where Tn correspond to as the vector in phase space,
the symbol m is described as the embedding dimen-
sion and τrepresent to as the delay time.

2.2.3. Average mutual information (AMI) technique
The average mutual information is computed from Bz,
Vx, Dst and AE indices. The phase space construction
can be obtained from the initial minimum of AMI
(Shaw 1981), the initial minimum of the AMI is cho-
sen as delay time. The appropriate measure for deter-
mining τ is the AMI between xn and xðnþτÞ (Fraser and
Swinney 1986). From the time series {x0, x1, x2, . . .,
xi, . . ., xn}, the minimum (xmin) and the maximum

(xmax) of the series can be used to obtain the absolute
difference |xmax − xmin| values. However, the difference
is partitioned into j equally sized period, where j is
a huge integer number expressed in Equation (8):

MðτÞ ¼ �
Xj

q¼1

Xj

r¼1

pqrðτÞ ln
pqrðτÞ
pqpr

: (8)

The symbols Pq and Pr are the probabilities that the
variable assume a value in the qth and rth bins, respec-
tively. While Pq;rðτÞ represents the combined prob-
ability that xn is in bin q and xðnþτÞis in bin r.

2.2.4. False nearest neighbour (FNN) evaluation
FNN is an appropriate technique for evaluating the opti-
mal embedding dimension for Bz, Vx, Dst and AE
indices. For this reason, the algorithm gets rid of the
incorrect neighbours (Kennel et al. 1992). The major
concept is to investigate how the number of FNNchanges
along the trajectory with increase in embedding dimen-
sion. In onedimension, the points are near to one another
as a result of projection, this will be segregated in upper

Figure 2. (a) Bz index data from Ominiweb observatory for 2008–2017. (b) Wavelet power spectrum of Bz index between 2008 and
2017, with concentration of power between 512 and 1024 months. (c) GWS, while the breaking lines symbolize significance level
of 5% (d). The broken lines in scale-average time series symbolize confidence level of 95% for Bz index.
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dimensions. The difference between two relative distance
neighbour points intensify, whenmoving from d to d + 1
and it is a measure for casting embedding errors
(Abarbanel et al. 1990; Suresh and Selvaraj 2017). This
measure is referred to as false nearest neighbour distance,
which is expressed in Equation (9) as:

R2
dþ1ðn; rÞ � R2

dðn; rÞ
R2

dðn; rÞ
� �1

2

¼ jxðnþ τÞ � xðtr þ τÞj
Rdðt; rÞ >Rtot;

(9)

where t and tr represents corresponding times to
neighbour and original points, respectively, Rd is
called the distance in the phase space with embedding
dimension d. While Rtot is the threshold tolerance. The
FNN plots are employed in this study using Equation
(9) (see Figure 7(a–d)).

2.2.5. Lyapunov exponents (LE)
The LE is used to explain when the near trajectories
diverge or converge. The trajectories converge and the
structure are stable when the exponents are zero or
negative. The trajectories diverge and the structure
remains unstable if the Lyapunov exponent is positive,
that is the structure remains chaotic (Eckman and
Ruelle 1985). A huge LE is significant, due to high
limit of exactness for any predictive model that is not
always restructured. The average exponential rate of
divergence of two originally near paths was explained
using Equation (10):

λ ¼ lim
1
n
ln
jΔxðxo; nÞj

jΔxoj ; (10)

where λ represent Lyapunov exponents (LE) and it is
applied for differentiating different kinds of paths and
to determine the rate of divergence (Shaw 1981; Bahr

Figure 3. (a) Dst index data from Ominiweb observatory for 2008–2017. (b) Wavelet power spectrum of Dst index between 2008
and 2017, with concentration of power between 512 and 1024 months. (c) GWS, while the breaking lines symbolize significance
level of 5% (d). The broken lines in scale-average time series symbolize confidence level of 95% for Dst index.
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and Froyland 1992). The exact estimation of a chaotic
dynamical structure is a component of the major
Lyapunov exponent (Abarbanel and Lali 1996) which
is expressed in Equation (11):

Δn ¼ 1
λmax

: (11)

The Lyapunov exponent plots of Bz, Vx, Dst and AE
indices are obtained using Equations (10) and (11) is
presented in Figure 8(a–d).

2.2.6. Phase space reconstruction
Figure 9(a–d) illustrates the phase space reconstruc-
tion path for the Bz, Vx, Dst, AE time-series para-
meters. It was noted that changes in the phase space
pattern were observed with different variables from
the present study.

3. Discussion of the results

The wavelet power spectrum was used to decompose
the solar wind, interplanetary magnetic field, distur-
bance storm time and auroral electrojet time series
into different scales. The WPS examines the non-
stationary signal which allows the classification of
solar wind, interplanetary magnetic field, auroral elec-
trojet and disturbance storm in time series. The results
provide us with more information about the progres-
sion of these irregularities in frequency and time
mode.

Figures 1(a)–4(a) show typical time series from the
raw data of the solar wind, interplanetarymagneticfield,
disturbance storm time and auroral electrojet
parameters from 2008 to 2017. On the other hand,
Figures 1(b)–4(b) illustrates the power of the WPS for
the solar wind, interplanetary magnetic field, distur-
bance storm time and auroral electrojet parameters.

Figure 4. (a) AE index data from Ominiweb observatory for 2008–2017. (b) Wavelet power spectrum of AE index between 2008
and 2017, with concentration of power between 512 and 1024 months. (c) GWS, while the breaking lines symbolize significance
level of 5% (d). The broken lines in scale-average time series symbolize confidence level of 95% for AE index.
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Figures 1(b)–4(b) show the real fluctuation of the wave-
lets character relative to their magnitude. The highest
energy of the signal over the period is represented by the
colour redwhileweaker intensity represents blue colour.
The energy distribution of WPS is concentrated
between the periodic cycles of 512–1024 months band
with maximum variability. This implies that the time
series is a powerful annual indicator for solar wind,
interplanetary magnetic field, disturbance storm time
and auroral electrojet parameters (see Figures 1(b)–4
(b)). The weak variation implies reductions of the
power within the band periodic cycles. The blank
space denotes the missing data gaps. The global wavelet
spectrum (GWS) of
Figures 1(b)–4(c) examines the prevailing periods of
the signals of solar wind, interplanetary magnetic field,
disturbance storm time and auroral electrojet data for
different periods. Figures 1(b)–4(c) illustrate the signifi-
cant peaks above the 95% confidence level for the GWS,
which are represented by the dashed lines. The assess-
ment of the parameters is the confidence level. The usual
variable is the 95% confidence level and is correspond-
ing to 5% level of significance. The various peaks in the
global spectra signify that the signal is made of fluctua-
tions with different time phase andwith different ampli-
tude. The amplitude of theGWS specifies the obtainable
potential for the analysed signal. The distribution of
feature scales basically controls the global wavelet spec-
trum shape (see Figures 1(b)–4(c)). Figures 1(b)–4(d)

exhibit the scale-average wavelet power and is a time
series of the mean variation in a definite band. We
noticed that 512–1024months can be used to investigate
the modulation of both frequency and time series. The
figures are composed by the mean of Figures 1(b)–4(b)
across the scales between 512 and 1024 months, this
produces a measure of the yearly mean variation against
time. This approach was engaged to validate the wavelet
results and to obtain the periodicity content of the Vx,
Bz, Dst, and AE time series. The similar results attained
between 512 and 1024 months reveal different periodi-
cities tend to appear with no stable structure during
each year. The significant amplitude of WPS was seen
in all the years. It can be noticed that Vx, Bz, Dst andAE
are affected at the time of geomagnetic storm. This
occurrence could possibly be attributed to the domi-
nance of coronal mass ejections during high solar activ-
ity geomagnetic storms. On the contrary, when the solar
activity is low the wavelet coefficients exhibit low power
spectrum energy. Richardson et al. (2002) established
that geomagnetic storms are connected by streams of
high solar wind speed emanating from coronal holes
and are frequent during the decline phase of the solar
cycle which are usually small in amplitude in contrast to
solar maximum conditions.

The AMI and FNN techniques provide an under-
standing of the complexity of the fundamental system.
Figure 6(a–d) shows the AMI in bits with time delay
function of Vx, Bz, Dst, and AE time series between

Figure 5. The detrended time series data for (a) Bz, (b) Vx, (c) Dst index, (d) AE index data obtained from Ominiweb from 2008 to
2017.
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2008 and 2017. We computed AMI in order to derive
the time delay function (τ). The embedding dimension
was obtained from a geometrical analysis described as

false nearest neighbour (see Figure 7(a–d)). When the
false nearest neighbours move towards zero, the pre-
ferred dimension is attained. For the Vx, Bz, Dst, and

Figure 6. (a–d): Average mutual information in bits against the delay time in hours obtained from detrended time series for (a) Bz,
(b) Vx, (c) Dst index, (d) AE index data obtained from Ominiweb from 2008 to 2017.

Figure 7. (a–d): Fraction of false nearest neighbour Vs embedding dimension obtained from detrended time series for (a) Bz, (b)
Vx, (c) Dst index, (d) AE index data obtained from Ominiweb from 2008 to 2017.
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AE parameters the minimum Embedding dimension
(m) appears to be 5, 7, 6 and 6, respectively
(see Figure 7(a–d)). These results describe the residual

in any dimension and it provides a quantitative
demonstration of how data can be modelled in that
dimension. To identify the chaotic behaviour of Bz,

Figure 8. (a–d): Lyapunov exponent obtained from detrended time series for (a) Bz, (b) Vx, (c) Dst index, (d) AE index data obtained
from Ominiweb between 2008 and 2017.

Figure 9. (a–d): Phase space reconstruction obtained from detrended time series for (a) Bz, (b) Vx, (c) Dst index, (d) AE index data
obtained from Ominiweb from 2008 to 2017.
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Vx, Dst and AE parameters in a dynamical system,
a quantifier – Lyapunov exponent was employed.

Figure 8(a–d) depicts Lyapunov exponent obtained
from detrended time series of Bz, Vx, Dst and AE
parameters measured from Ominiweb between 2008
and 2017. These results revealed that the positive
values of the Lyapunov exponent for Bz, Vx, Dst and
AE time series are 0.098, 0.039, 0.05 and 0.17, respec-
tively. This shows a strong indicator for the chaotic
behaviour in the parameters (Bhattacharyya 1990).
The phase space reconstruction plot of the Bz, Vx,
Dst and AE parameters time series is stochastic as
illustrated in Figure 9(a–d). It shows that the delay
τ ¼ 10 and 5 � m � 7 depends on the parameters
obtained from AMI and FNN method against the
actual time series. It also determines the state of the
dynamical system which can be obtained in both
identification and predictability using phase space
construction.

The result depicts that Sun–Earth is a very dynami-
cal structure in which a constant change of mass,
energy and momentum take place between the solar
wind and the Earth’s magnetosphere during reconnec-
tion as suggested by Vasyliunas (1975). The chaotic
behaviour of magnetosphere might be the conse-
quence of the joint effect of solar wind and internal
magnetospheric activity (Unnikrishnan, 2008). The
fluctuation of the magnetosphere-ionosphere system
is the reflection of the solar wind fluctuation and has
influence on Earth’s magnetosphere which structurally
extends nonlinearly. The magnetosphere system has
internal variability, which can be suppressed and the
system might move towards stochasticity preferable
than deterministic chaoticity. Solar winds are stochas-
tic drivers which have impact on storm flowing into
the system due to CMEs that create the geomagnetic
storms. The auroral arcs are weak when the solar wind
is not driving the magnetosphere. The strength of the
auroral arcs and auroral currents enhances, when the
solar wind driving magnetosphere increases, which
have impact on Bz, Vx, Dst and AE parameters.
Between the period of 2008 and 2017, the nonlinear
time series techniques employed using Bz, Vx, Dst and
AE parameters and Lyapunov exponent as a quantifier
indicates the chaotic behaviour in the magnetospheric
dynamic system. The calculation of this Lyapunov
exponent from the time series parameters produces
positive values of Lyapunov exponent, demonstrating
the occurrence of chaos. The Bz, Vx, Dst and AE
parameters are able to trace variation connected with
the time-dependent dynamical complexity of magne-
tospheric variability during the storm and quiet peri-
ods. The Bz, Vx, Dst and AE parameters exhibit
different Lyapunov exponent due to different condi-
tions from coronal mass ejections and magnetic cloud.
Lastly, this research investigation indicates that the
dynamics in the magnetosphere-ionosphere can be

described in detail when high-resolution data and
more statistical techniques are used. The evaluation
of the persistence feature of the Bz, Vx, Dst and AE
parameters connected to the geomagnetic storms can
be suggested as a measure for predicting magnetic
activity.

4. Conclusion

The study shows the results of the Bz, Vx, Dst and
AE parameters using both wavelet spectrum analysis
and nonlinear dynamic time series techniques. WPS
depicts greater concentration of power between the
512 and 1024 months bands across the Bz, Vx, Dst
and AE parameters. This event can be attributed to
coronal mass ejections for the period of high solar
activity, when the solar activity is low the wavelet
coefficients exhibit low power spectrum energy. The
results of the nonlinear dynamic time series techni-
ques have revealed that the Bz, Vx, Dst and AE time
series is deterministic and can be modelled by
means of the phase space method. The phase space
methods establish the deterministic nature of the
time series, Bz, Vx, Dst and AE which shows
a positive value of Lyapunov exponents. The diver-
gence of the trajectories is an indication of chaos
which was demonstrated by reconstructing phase
space.
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