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ABSTRACT
Adequate estimates of aquifer properties are of utmost importance for proper management of 
groundwater resources. In an effort to provide alternative way of estimating aquifer properties 
at minimum cost, Artificial Neural Network (ANN) model was generated for the prediction of 
Transmissivity (T) and Hydraulic Conductivity (K). Six hundred and thirty eight vertical electrical 
soundings data were acquired and interpreted to obtain Dar-Zarrouk parameters. The diag
nostic relationship between the K values measured in reference wells and electrical soundings 
data was combined with Dar-Zarrouk parameters to estimate T and K. Transverse resistance (R), 
thickness (h), resistivity (ρ), K and T were subjected to ANN analysis using SPSS software and 
Python. The results showed that R ranges from 40 to 21552 Ωm2, h ranges from 1.4 to 40.0 m, ρ 
ranges from 4 to 754 Ωm. K varies from 0.004 to 0.800 m/day and T varies from 0.04 to 18.20 
m2/day within the study area. ANN model was able to predict K and T values with an accuracy 
ranging from 97 to 99%. RMSE values for the prediction ranged from 0.063 to 0.250. The ANN 
model generated was able to predict K and T of the aquifer from geo-electrical data at 
minimum cost.
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1. Introduction

Groundwater is believed to be the only viable source of 
water in many areas where the development of surface 
water supply for physical/industrial development to 
achieve maximum human growth is not well devel
oped. Groundwater is an important source of water 
for drinking, irrigation, and industrial uses. It is also 
a major source of domestic water requirement. The 
provision of water for domestic and other uses in both 
rural and urban centres is one of the most intractable 
problems in Nigeria today. In order to solve this pro
blem, it is important to investigate the properties that 
influence the availability of groundwater. 
Hydrogeological and geophysical methods has proven 
to be an effective tool in estimating aquifer 
parameters.

In-situ hydrogeological measurement can be car
ried out through pumping test, grain size analysis, and 
tracer techniques from which subsurface parameters 
such as transmissivity, hydraulic conductivity, stora
tivity, etc., can be obtained in an aquifer (Sanuade 
et al. 2018). This approach tends to be expensive and 
take a longer time to execute. Geophysical methods 
have also been used in estimating the physical proper
ties of the subsurface. These physical properties have 
a direct relationship with the aquifer properties that 
govern the occurrence and flow of groundwater. 

However,modelling strategies have been recognised 
as the most important tool for resolving environmen
tal issues such as management of non-point source 
emissions, conservation of source water, and manage
ment of nutrients. There is currently a trend towards 
physically-based models in which saturated hydraulic 
conductivity is the most significant parameter. The 
saturated hydraulic conductivity has also been identi
fied as a highly spatially variable hydraulic property 
and the simulation process requires an estimate of the 
representative values of this parameter for each 
watershed area or sub-basin.

Various geophysical and hydrogeological para
meters have established relationships that are made 
possible by the correlation that exists between the 
physical measurements obtained from the two 
approaches. There is, for example, a relationship 
between electrical resistivity (ρ) and transmissivity 
(T) which is as a result of the linkage of both para
meters to pore space structure and heterogeneity 
(Soupios et al. 2007). Generally, geophysical methods 
are cost-effective, non-destructive and fast to imple
ment as compare to direct in-situ measurements. In 
order to understand the relationship that exists 
between geophysical and hydrogeological parameters, 
several experiments were carried out by researchers by 
taking into account the physical laws that are asso
ciated with subsurface processes (Niwas and Singhal 
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1981; Niwas and Lima 2003). Ahmed et al. (1988) have 
explored the connections between transverse resis
tance and transmissivity by using a geo-statistical 
approach. Youssef (2020) employed a geo-statistical 
approach in interpreting Dar-Zarrouk parameters 
estimated for surface electrical measurement, from 
which he generated the spatial distribution properties 
of electric anisotropy, aquifer hydraulic characteristics 
and groundwater quality. Sanuade et al. (2018) imple
ment the application of a nonlinear artificial neural 
network model to estimate transmissivity in 
a basement complex environment.

Furthermore, Artificial Neural Networks (ANNs); 
a type of non-linear regression computational tools 
(Basheer and Hajmeer 2000) whose application in 
predicting aquifer properties from surface geophysical 
measurement have not been fully explored. According 
to Hornik et al. (1989), the theoretical implementation 
of multilayer feed-forward networks as universal 
approximators has been proven.

Most attempts of using ANNs for prediction of 
hydraulic conductivity (K) often use its relationship 
with particle size, i.e., clay, silt, and sand as input (Bart 
et al. 2016; Al-Sulaiman and Aboukarima 2016). Little 
work has been done as regards the implementation of 
applicability of electrical resistivity due to data scarcity 
and limited accessibility. In addition, it is of utmost 
importance to quantify the degree of uncertainty in 
stochastic modelling associated with the predictions. 
One of the key features of ANNs is that it has the 
ability to identify hidden patterns in large data sets, 

which provides an ideal way for characterising the 
heterogeneity of basement complex terrains.

Most of the previous studies use correlation and 
geo-statistical analysis to characterise the relationship 
that exists between hydrogeological and geophysical 
parameters. The main objective of this research is 
therefore to establish an Artificial Neural Network 
(ANN) ensemble modelling approach to aquifer prop
erties on three different rock types, thereby enabling 
its applicability on other areas with similar geology. 
The novel attributes of ANN is that it is information 
driven, which gives an exceptional means of predicting 
both transmissivity and hydraulic conductivity.

1.1. Geological settings

The study area is located between Latitudes 7°17ʹ00” to 
7°31ʹ00” North of the Equator and Longitudes 3° 
46ʹ00” to 3°59ʹ00” East of the Greenwich Meridian, 
covering about 540 km2 (Figure 1). The city has 
a population of about 3.6 million according to the 
2006 population estimate. Accessibility of the area 
can be best described in terms of its road network. 
The city is readily accessible by roads. The study area 
is relatively rugged with undulating topography. 
According to Jones and Hockey (1964), the relief of 
the basement complex is closely associated with the 
underlying rocks. The elevation varies between 160 
and 360 m above mean sea level with an average of 
230 m. The study area is well-drained by rivers and 
streams that are topographically controlled and flow in 

Figure 1. Topographic map of Ibadan showing the study area.
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the direction of rock strike. The dominant rock types 
in Ibadan area are the quartzite of the meta- 
sedimentary series, migmatite – gneiss complex com
prising the banded gneiss, augen gneiss and the mig
matite (Figure 2). These rocks are intruded by 
pegmatite, quartz veins, aplites and dolerite dykes 
(Oladunjoye and Jekayinfa, 2015). Quartz schist out
crops occur as long ridges with relative a high eleva
tion and strike running in the N – S direction between 
340° and 350° with a consistent eastern dip. The wes
tern and eastern part of the study area is covered by 
Migmatite gneiss complex with N – S strike direction 
and with an average dip angle of 47° W and 36° E. In 
some places, they are obliterated by intrusive veins and 
dykes. Minor structures like folds, shear zones, pinch 
and swell structures, concordant and discordant 
quartz veins and quartz are present on the migmatite 
gneiss complex.

The trends of foliation and joints in the rocks largely 
controls the direction of the rivers, imposing a dendritic 
pattern on the drainage with irregular branching of 
tributary streams (Figure 3). Major rivers that drain 

the area include river Omi, Ona, Ogunpa and Kudeti 
which are fed by steams from different parts of the city.

2. Materials and methods

Three major methods were employed in carrying out 
the investigation for the prediction of aquifer proper
ties within the study area. These are geophysical inves
tigation, hydrogeological investigation (pumping test) 
and Statistical modelling. Figure 4 shows the step by 
step implementation of the methods used.

2.1. Geophysical investigation

Geophysical investigation involving vertical electrical 
sounding was employed for this research. Six hundred 
and thirty eight vertical electrical sounding data were 
acquired using Schlumberger array technique with max
imum current electrode separation of 133 m and max
imum potential spacing of 10 m. The Vertical Electrical 
Sounding points were distributed over three different 
rock types (Figure 5) – Migmatite Gneiss, 

Figure 2. Geological map of the study area (Modified after Oladunjoye and Jekayinfa 2015).
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Undifferentiated Schist and Quartzite/quartz-schist, with 
Migmatite having 50% (323 points) of the data set, 
Undifferentiated schist 33% (208 data points) and 
Quartzite/quartz-schist 17% (107 data points). The 

obtained VES data were interpreted using partial curve 
matching technique and computer iteration program 
(WINRESIST), which enables accurate estimation of 
the layer parameters (layer resistivities and thicknesses).

Figure 3. Drainage map of the study area.

Figure 4. Flow chart showing the methods adopted for the study.
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2.2. Hydrogeological investigation

Pumping test results obtained by Tijani et al. (2009) 
and (2018)) on the Migmatite Gneiss, Quartzite/ 
Quartz-Schist and Undifferentiated Schist was used 
in this research. The pumping test operation involved 
the pumping out of groundwater from drilled bore
holes and measuring the response of the aquifer in 
terms of water level, discharge rate and pumping 
duration, before and after pumping. The obtained 
data were analysed using the straight line method, 
where drawn down was plotted with an arithmetic 
scale on the y-axis against the logarithm time scale 
on the x-axis.

2.3. Estimation of Dar-Zarrouk parameters and 
aquifer parameters

The layered parameters obtained from the VES were 
used to compute the Dar-Zarrouk parameters which 
include transverse resistance, transverse resistivity, 
longitudinal resistivity (aquifer resistivity), and long
itudinal conductance (Maillet 1947). The equations 
used in obtaining these parameters are listed below.

Aquifer Thickness (ha) 

ha ¼
Xhi (1) 

Aquifer Resistivity ρa
� �

ρa
� �

¼ ρL¼ha
S
¼

Phi

Phi
ρi

(2) 

Longitudinal Conductance (S): 

S ¼ n
X

i¼1

hi

ρi

� �

; S ¼
h1

ρ1
þ

h2

ρ2
þ

h3

ρ3
þ . . .þ

hn

ρn
Ω� 1� �

(3) 

Transverse Resistance (R) 

R ¼ h1ρ1 þ h2ρ2 þ h3ρ3 þ . . .þ hnρn Ωm2� �
(4) 

Transverse Resistivity (ρt): 

ρt ¼
R
h
¼

Phi ρi
Phi

ðÞ (5) 

Longitudinal Resistivity: 

ρt ¼
R
h
¼

Phi ρi
Phi

ðÞ (6) 

Figure 5. Geological map of the study area showing distribution of VES points.
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Transmissivity (T); the product of hydraulic conduc
tivity and aquifer thickness, can be derived in term of 
R and S as 

T ¼ KσR (7) 

And 

T ¼
K
σ

� �

S (8) 

It has been observed by Niwas and Singhal (1981) that 
either of the two proposition. Kσ = constant or K/σ = 
constant be true for an area under study, also valid for 
other areas with similar geological setting and water 
quality. Hence, knowing the hydraulic conductivity 
(K) values of existing boreholes via pumping test and 
electrical conductivity (σ) values of the aquifer 
extracted from the geo-electric data carried out at the 
borehole location, it is possible to determine the trans
missivity values and its variation from place to place 
even for areas without boreholes (Niwas and Singhal 
1981)

Since 

KPTσ ¼ Constant Að Þ (9) 

Then 

Kcall ¼
A
σ

(10) 

Tcal ¼ KcalσR (11) 

Where; 

A ¼ Constant
Siemen

day

� �

KPT = Hydraulic conductivity from pumping test
Kcal = Calculated hydraulic conductivity (m/day) at 

each VES point
Tcal = Calculated transmissivity (m2/day) at each 

VES point

2.4. Artificial Neural Network (ANN)

According to Singh et al. (2013), ANN is a form of 
artificial intelligence that imitates the human brain by 
gaining knowledge through a learning process. ANN 
can model non-linear problems without implicit func
tions as it is in the case with the traditional statistical 
approaches. In this research, a supervised feed- 
forward multilayered perception network was used 
for the estimation of K and T. The ANN network 
consists of an input layer, a hidden layer and an output 
layer. The independent variables, i.e., the predictors 
are fed into input layer neurons of the network. 
Weight values are then attached to each of these pre
dictors, after which they are being transferred into the 
hidden layer neurons. A hidden-layer neuron sum the 
weighted value obtained from each input neuron, 

along with a bias, and then transfer it as a non-linear 
transfer function on to the output. The neurons of the 
output serve the same function as a hidden neuron.

The sets of input and output variables were used in 
training the network. The target output at each output 
neuron was achieved by gradual adjustment of the 
weights and the associated biases values. ANN training 
structure consists of the weights between the neurons, 
a transfer function and a learning algorithm. The 
weights determine the importance of each input vari
able while the transfer function serves as a control for 
the outputs generated from each of the neurons. At the 
beginning of each training process, each input neuron 
receives a prearranged weight values to its variable and 
combines these weighted inputs. Mathematically, the 
combined weight input is given by: 

netj ¼
Xxi vij � bj (12) 

netj: summation of the weighted input for the jth 

neuron; xi is the input from the ith neuron to the jth 

neuron;
vij: is the weight from the ith neuron in the previous 

layer to the jth neuron in the current layer;
bj: is the bias, associated with node j.
The neuron’s bias must be exceeded in this network 

before it can be activated. The activation level is eval
uated by passing the netj value through a transfer 
function. An iterative process is employed for the 
execution of the training process such that the level 
of the strength of each activation function of a neuron 
brings about the transfer of output as an input to the 
adjacent neurons. The activation function used for the 
training phase is the sigmoid function which can be 
expressed as 

f netj
� �

¼
1

1þ e� netj (13) 

The number of hidden layer neurons used was deter
mined by the trial and error approach. At each stage of 
the study, the number of neurons was increased to 
maximise the ANN model. A typically back- 
propagation algorithm was employed in the learning 
phase of ANNs. Back-propagation in multi-layered 
feed-forward networks is the most widely used super
vised training algorithm. In back-propagation net
works, information from the input layer to the 
hidden layer and then to the output layer is trans
mitted in the forward direction. The ANN structure 
was used in constructing the model as shown in equa
tions 9 and 10, and the structure of the model is also 
shown in Figure 6.

Hydraulic Conductivity = 

XN

i¼1
w2i

1

1þe� 2 w1i;1 Rð Þþw1i;2 ρð Þþb1ið Þ

 !" #

þb2 (14) 

Transmissivity = 
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XN

i¼1
w2i

1

1þe� 2 w1i;1 Rð Þþw1i;2 hað Þþb1ið Þ

 !" #

þb2 (15) 

Where N is the total number of neurons, w1 and w2 are 
weights of the hidden layer and output layer, respec
tively, b1i and b2 are the bias of the hidden and the 
output layer, respectively, R is transverse resistance, h is 
the aquifer thickness and ρ is the aquifer resistivity.

3. Results and discussion

3.1. Geo-electric interpretation

The electrical resistivity data interpretation reveals 
a three to five subsurface geo-electric layers with 
a lithological sequence of topsoil, laterite/clay, weath
ered formation, fractured basement, and bedrock. The 
three-layer system confirms the occurrence of an aqui
ferous weathered layer or fractured saprolite zone 
sandwiched between more resistive topsoil and bed
rock, a situation that is typical of the basement rock 
settings.

The distribution of the geo-electric parameters is 
shown in Figure 7 using a box-plot. The summary of 
the geo-electric parameter is presented in Table 1. 
Topsoil thickness varies between 0.2 and 4.2 m 
(mean: 1.05) in migmatite, 0.3–9 m (mean: 1.28) in 
undifferentiated schist and 0.2–3.6 m (mean: 1.15) in 
quartzite/quartz schist locality (Table 1). The topsoil 
resistivity values range from 20–1700 Ωm (mean: 
277), 20–1169 Ωm (mean: 227) and 12–1143 Ωm 
(mean: 240) for migmatite, undifferentiated schist 
and quartzite/quartz schist, respectively. Weathered 
layer thickness values obtained ranged from 0.9 to 
26 m (mean: 8.8), 0.4–37 m (mean: 10.5) and 
1.3–44.8 (mean: 14.2) for migmatite, undifferentiated 
schist and quartzite/quartz schist, respectively. The 
weathered layer thickness was seen to be thickest 
within the quartzite/quartz schist lithology and this 
can be related to ease at which the rock weathered. 

The obtained weathered layer resistivity values vary 
between 10 and 979 Ωm (mean: 96), 6–881 Ωm (mean: 
126) and 10–880 Ωm (mean: 136) for migmatite 
gneiss, undifferentiated schist and quartzite/quartz 
schist lithology. High resistivity value obtained within 
the quartzite/quartz schist lithology can be attributed 
to the quarzitic nature of the aquifer. Low resistivity 
value obtained from within migmatite lithology is as 
a result of the weathered zone been mostly dominated 
by clayey materials.

The basement resistivity values ranged from 12 to 
6977 (mean: 879), 10 to 6988 Ωm (mean: 714) and 11 
to 8128 Ωm (mean: 525) in migmatite gneiss, undif
ferentiated schist and quartzite/quartz schist lithology. 
Based on the resistivity values obtained, the degree of 
fracturing was more prominent in quartzite/quartz 
schist lithology with migmatite gneiss having the 
least degree of fracturing.

The aquifer thickness obtained from VES data varied 
between 1.6 and 37.5 m (mean: 11.3) in Migmatite 
Gneiss, 1.4–40.6 m (mean: 13.24) in undifferentiated 
schist and 3.1–57.1 m (mean: 18.26) in the quartzite/ 
quartz schist lithology. Figures 8(a) and 9 show the 
aquifer thickness distribution within the three rock 
types and the spatial variation in aquifer thickness in 
the study area. From the result, the quartzite/quartz- 
schist and undifferentiated schist bedrock exhibit high 
aquifer thickness value, this was expected because of the 
easy of fracturing and deep weathering of the bedrock 
to give a thick overburden. However, low aquifer thick
ness value was obtained within the migmatite gneiss 
region which was due to the bedrock resistance to 
weathering. Greater depth to basement indicates larger 
space to accommodate the infiltrating water but the 
type of material occupying this space must be put into 
consideration when using the aquifer thickness to esti
mate the hydraulic potential of an area, as clayey mate
rials are only known to be porous but not readily 
permeable to release water to the underlying fractured 
bedrock and the penetrating borehole.

Figure 6. Artificial neural network architecture.
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Longitudinal Resistivity varies between 9 and 671 
Ωm (mean: 77) in migmatite gneiss, 7–754 Ωm (mean: 
112) in the undifferentiated schist and 4–542 Ωm 
(mean: 101) within quartzite/quartz schist. 
Longitudinal resistivity values were used as the aquifer 
resistivity due to the longitudinal characteristic of the 
understudy aquifer where the weathered layer (rego
lith) is underlain by more resistive fresh bedrock 
(Reiter 1981).

Figures 8(b) and 10 show the distribution and var
iation plot of the aquifer resistivity of the study area. 
From the plot, it could be observed that the high 
aquifer resistivity values occur mostly within the mig
matite gneiss region, which is as a result of the materi
als that constitute the overburden. However, within 
the quartz/quartz schist and the undifferentiated schist 
region, there exists a relatively low aquifer resistivity 
which is an indication of weathering of schist to clay. 

The wide variation in this parameter indicates the 
inhomogeneity of the basement complex aquifers as 
indicated by Murali and Patangay (2006).

The transverse resistance values vary from 40 to 
13,024 Ωm2 (mean: 1429) within the Migmatite ter
rain, 97–13,573 Ωm2 (mean: 1855) in the undifferen
tiated schist and 49–21,552 Ωm2 (mean: 2525) within 
quartzite/quartz schist. Figure 11 represents 
a variation plot of the transverse resistance of the 
study area. The low values of transverse resistance 
observed within the quartzite/quartz-schist can be 
attributed to the presence of clayey materials which 
are only known to be porous but not readily perme
able to release water to the underlying fractured bed
rock. On a purely empirical basis, it can be admitted 
that transmissivity is directly proportional to the 
transverse resistance (Ungemach et al. 1969). 
Therefore, transverse resistance could be used in the 

Table 1. Summary of geo-electric parameters and Dar-Zarrouk parameters.
Migmatite Gneiss Undiffrentiated Schist Quartzite/Quartz Schist

Min. Max. Mean Min. Max. Mean Min. Max. Mean

Aquifer Thickness (m) 1.6 37.5 11.3 1.4 40.6 13.24 3.1 57.1 18.26
Aquifer Resistivtity (Ωm 9 671 77 7 754 112 4 542 101
Longitudinal Conductance (Ω−1) 0.01 1.92 0.23 0.01 1.52 0.22 0.32 1.60 0.32
Total Transverse Resistance (Ωm2) 40 13,024 1429 97 13,573 1855 49 21,552 2525
Transvere Resistivity (Ωm) 11.01 824.34 115.11 13.9 784.32 137.89 15.93 751.62 133.9

Figure 7. Box plot showing the distribution of (a) Topsoil thickness (b) Topsoil resistivity (c) Weathered layer resistivity (d) 
Weathered layer thickness (e) Basement resistivity, within migmatite gneiss, undifferentiated schist and quartzite/quartz schist 
lithology.
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determination of zones with high groundwater poten
tial suitable for drilling wells.

The values of hydraulic conductivity (K) esti
mated from geo-electric data varies from 0.01 to 

0.87 m/day (mean: 0.1), 0.007–0.75 m/day (mean: 
0.11) and 0.004 −0.457 m/day (mean: 0.085) in 
migmatite, undifferentiated schist and quartzite/ 
quartz schist. Figure 12 shows the spatial 

Figure 9. Spatial distribution of aquifer thickness within the study area.

Figure 8. Box plot showing the distribution of (a) Aquifer thickness (b) longitudinal resistivity (c) Transverse resistance (d) 
Longitudinal conductance (e) Hydraulic conductivity (f) Transmissivity, within migmatite gneiss, undifferentiated schist and 
quartzite/quartz schist lithology.
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distribution of hydraulic conductivity within the 
study area. The low values observed within the 
Quartzite/Quartz Schist can be attributed to high 
clay content thereby making restricting the ease at 
which water is being released from the underlying- 
fractured bedrock. This value falls within the range 
of minimum and maximum value for the weath
ered igneous and metamorphic rocks 
(0.015244–3.04878 m/day) as given by Halford 

and Kuniasky (2002). Also, the values fall within 
the range of the hydraulic conductivity determined 
by Tijani et al. (2009). Table 2 shows a summary 
of the hydraulic properties obtained from the study 
area.

The calculated transmissivity values varies from 
0.03 to 16.98 m2/day (mean: 1.86), 0.097–13.53 m2/ 
day (mean: 1.78) and 0.04–18.1 m2/day (mean: 
2.13) in migmatite, undifferentiated schist and 

Figure 11. Spatial distribution of transverse resistance within the study area.

Figure 10. Spatial distribution of aquifer resitivity within the study area.
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quartzite/quartz-schist, respectively. Low T values 
(<1–5 m2/day) are characteristic of the basement 
aquifer, except when there is a highly transmissive- 
fractured zone (Nur and Goji 2005). Figure 13 
shows the spatial distribution of transmissivity 
within the study area.

3.2. Validation and correlation with pumping test 
results

Tijani et al. (2009), (2018)) conducted a total of 
twenty-two (22) pumping test within the study area. 
The pumping test was analysed to determine the 
impacts of the underlying bedrock types on the 

Figure 12. Spatial distribution of hydraulic conductivity within the study area.

Table 2. Summary of hydraulic properties values obtained within the study area.
Migmatite Gneiss Undiffrentiated Schist Quartzite/Quartz Schist

Min. Max. Mean Min. Max. Mean Min. Max. Mean

Hydraulic Conductivity (m/day) 0.01 0.87 0.1 0.007 0.75 0.11 0.004 0.457 0.085
Transmissivity (m2/day) 0.03 16.98 1.86 0.097 13.53 1.78 0.04 18.1 2.13

Figure 13. Spatial distribution of transmissivity within the study area.
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hydraulic characteristics. The borehole data revealed 
average saturated thickness which varies from 30 m in 
Migmatite to 62.6 m in Quartzite/Quartz Schist and 
22 m in Undifferentiated Schist. The observed yield 
was generally low with an average value of about 
80.8 m3/day in all the three bedrock settings.

The estimated transmissivity (T) ranges from 1.1 to 
4.2 m2/day (mean, 2.8 m2/day) in Migmatite, 
3.63–4.62 m2/day(mean, 4.1 m2/day) in 
Undiffrentiated Schist and 0.41–10.6 m2/day (mean, 
2.7 m2/day) in the quartzite/quartz Schist environ
ment. The estimated hydraulic conductivity values 
vary between 0.001 and 0.14 m/day (mean 0.075 m/ 
day) in Migmatite, 0.17–0.21 m/day (mean, 0.19) in 
Undifrentiated Schist and 0.01–0.18 m/day (mean 
0.046 m/day) in Quartzite/Quartz Schist.

3.3. Relationships between hydro-geological and 
hydro-geophysical estimated hydraulic properties

The hydraulic properties estimated using geophysical 
method and those determined via pumping test were 
correlated. The hydro-geophysical and hydro- 
geologically estimated hydraulic properties obtained 
in this study showed a good positive correlation of 
0.82 to 0.99 for hydraulic conductivity and transmis
sivity, respectively (Figures 14 and 15). This 

correlation is a good indication of the applicability of 
geophysical method in the determination of hydraulic 
parameters. This is consistent with previous works of 
Giansilvio et al. (1984) and Kumar et al. (2001).

3.4. Artificial neural network

The regression model used for the implementation of 
the ANN model is displayed in Figure 6. Figures 16, 
17 and 18 display the scattered plot of the output 
generated during the training phase. The coefficient 
of correlation for the training result are 0.99, 0.99 and 
0.99 for transmissivity and 0.98, 0.99, and 0.97 for 
hydraulic conductivity for quartzite/quartz schist, 
undifferentiated schist and migmatite gneiss, respec
tively. Figures 19, 20 and 21 show the scattered plot of 
testing data used in validating the model, with 
a correlation coefficient of 0.99, 0.99 and 0.98 for 
transmissivity and 0.99, 0.98, and 0.98 for hydraulic 
conductivity for quartzite/quartz schist, undifferen
tiated schist and migmatite gneiss, respectively. 
There is some variation from the expected values 
between the predicted values of K and T. The var
iance, however, is within an acceptable limit of less 
than 5% (Sanuade et al. 2018).

In order to test the efficacy of the predicted ANN 
model, Root Mean Square error (RMSE) was 

Figure 14. Correlation plot between aquifer resistivity and hydraulic conductivity.

Figure 15. Corelation plot between transverse resistance and transmisivity.
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calculated. The calculated RMSE for the model show 
values ranging from 0.063 to 0.250. The low-value of 
RMSE values (Table 3) indicated high predictive per
formances of the model.

4. Conclusions

A combined geophysical, hydrogeological, and statistical 
modelling approach has been used to predict hydraulic 
conductivity and transmissivity within Ibadan 

Figure 16. Regression plot for the training of the ANN model generated for the prediction of (a) Transmissivity (b) Hydraulic 
conductivity on Quartzite/Quartz Schist Lithology.

Figure 17. Regression plot for the training of the ANN model generated for the prediction of (a) Transmissivity (b) Hydraulic 
conductivity on Undifferentiated Schist Lithology.

Figure 18. Regression plot for the training of the ANN model generated for the prediction of (a) Transmissivity (b) Hydraulic 
conductivity on migmatite lithology.

Figure 19. Regression plot for the testing of the ANN model generated for the prediction of (a) Transmissivity (b) Hydraulic 
conductivity on quartzite/quartz schist lithology.
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Metropolis, south-western Nigeria. Dar-Zarrouk para
meter which is a secondary derivative of geo-electric 
data has proven to be a useful tool in estimating hydraulic 
parameters. The good correlation (r = 0.95) between 
transverse resistance R (Ωm2) and transmissivity further 
confirms the established relationship between hydraulic 
and Dar-Zarrouk parameters. ANN has been used in this 
study to predict transmissivity and hydraulic conductiv
ity from geo-electric data in south-western Nigeria’s base
ment complex area. The measurement of the degree of 
uncertainty reveals that in predicting T and K, the 
Artificial Neural Network model generated is reliable. 
The degree of correlation between the observed and pre
dicted values of T and K ranges from 0.97 to 0.99. In 
addition, the ANN model’s RMSE value was found to be 
within 0.063–0.250 suggesting the model’s high perfor
mance. Nevertheless, it is worth noting that the expected 
derived equation is applicable only for aquifers with 
similar characteristics or geology that have been studied.
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