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ABSTRACT
Geoelectrical inversion has some problems in inverting data due to the heterogeneous 
behaviour of Earth. One of the major concerns in inverting the data is due to the influence of 
noises, which comes from the disturbance due to human interventions, atmospheric variations, 
and electromagnetic disturbance, etc. . In this paper, we have presented a concept of Neuro 
Fuzzy algorithm which can interpret the noisy data successfully. Moreover, the data were 
tested with artificially generated random noise, gaussian noise and missing data. 
Kanyakumari field region having complex geological structures and its performance is vali
dated with a maximum threshold. Kanyakumari field region having complex geological struc
tures is used and the performance is validated with a maximum threshold. Neuro fuzzy 
technique has the dominant feature of training and testing the data with utmost accuracy. 
These implications are made to create the specific Graphical User Interface (GUI) for the 
algorithm and it works well for all types of Vertical Electrical Sounding (VES) data with good 
performance results.
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1. Introduction

Geophysical studies show ample evidences of the suc
cessful use of the resistivity method in groundwater 
prospecting. The geoelectrical resistivity method is 
more successful in investigating groundwater studies. 
In electrical prospecting, the electrical currents which 
are sometimes naturally present in the earth, may be 
measured, or one may introduce currents into the 
ground artificially by using batteries or generators, 
and investigate the electrical field distribution by sui
table measurements. For aquifer mapping and to esti
mate the subsurface features direct current resistivity 
methods are very useful. Vertical Electrical Sounding 
(VES) method is one of the best methods to study 
aquifers more reliably.

Due to the non-linear nature of the earth, it is 
difficult to estimate the subsurface parameters accu
rately. It is significant to note that the electrical resis
tivity values often vary instantaneously from one 
formation to the next, and hence the description of 
the real earth resistivity model in terms of the linear 
model may not be quite appropriate. Several attempts 
were made in the last three decades for geoelectrical 
resistivity inversion. The prominent inversion results 
were obtained from both the forward modelling tech
niques and direct inversion techniques. A good inver
sion method must simultaneously minimise the effects 
of data error and model parameter errors. Direct 

inversion techniques are trustworthy, but this too 
will suffer problems in generalisation. For a particular 
area under study with more number of training data
sets available, general soft computing methods works 
well, but if moving towards a generalised approach, we 
need a specially designed algorithm for carrying out 
the computational methods. Geophysical prospecting 
methods are commonly used to estimate geological 
structures of earth (Wisen et al. 2004; Castilho et al. 
2008; Reynolds 2011; Long et al. 2012; Arjwech et al. 
2015), hydrogeological characteristics (Zahody et al. 
1974; Giang et al. 2013; Trappe et al. 2019), subsoil 
investigations, civil engineering structure, agricultural 
and industrial regions. Stopinski (2003) studied the 
bedrock for the construction of a dam using the elec
trical resisitivity method. (Niedrleithinger et al. 2008) 
applied geophysical techniques for river embankment 
in Huang and Mayne. (Al-Fares et al. 2018) studied 
about leakage origin in Abu Baara dam using electrical 
resistivity tomography. (Ikard et al. 2014) charac
terised focussed seepage through an earth-fill dam 
using geoelectrical methods. Using resistivity logs, 
researchers are determining the reservoir characteris
tics (Archie 1942). Electrical resistivity survey has been 
implemented in various parts of the world for different 
purposes (ahlin et al. 2004; Friedman 2005; De carlo 
2013; Asfahani 2013; Lech et al. 2016; Koda et al. 2017; 
Kowalczyk et al. 2017; Rabarijoely 2018). Different 
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methods were applied to invert electrical resistivity 
data (Dahlin 2001; Loke and Dahlin 2002; Loke et al. 
2003; Loke and Lane 2004)

A specially designed algorithm was implemented in 
this research work using the Adaptive Neuro Fuzzy 
Inference System (ANFIS) to invert geoelectrical resis
tivity data. To evaluate the performance of the algo
rithm, studies were carried out by adding random 
noise and data deletion (missing data) on the inver
sion of resistivity profile. In this research work, ANFIS 
is applied to interpret the geoelectrical resistivity data. 
The obtained results are compared with the available 
litholog of the study area.

2. Methodology

Many researchers used geophysical exploration stu
dies using the direct current resistivity method and 
identified that this method is more reliable in estimat
ing the parameters (Kosinky and Kelly 1981; Sri; 
Niwas and Singhal 1981; Mazac et al. 1985; Yadav 
and Abolfazli 1998). VES data was interpreted using 
curve matching procedures and other computational 
methods (Flathe 1955; VanDam 1964; Mooney et al. 
1966; Ghosh 1971).

In general, the characteristic sounding curves are 
represented in multiple layers. Each of the four sets 
has particular properties that may be roughly classi
fied. For H and K-type curves ρ1> ρ2< ρ3 and ρ1< ρ2> 
ρ3, respectively, and we may be able to draw some 
conclusions about relative values of ρ1 and ρ3 if the 
spread has been extended sufficiently. The A and 
Q-type curves correspond to ρ1< ρ2< ρ3 and ρ1> 
ρ2> ρ3, respectively (Telford 1990).

3. Geophysical method

Geophysical exploration techniques are vibrant and 
powerful tools that plays a vital role in the delineation 
of aquifer parameters in different geological formations. 
In particular, the Geophysical method consisting of 
vertical electrical sounding (VES) has been proved to 
know the variation of resistivity of the aquifer para
meters (Rijo 1977). Schlumberger electrode array hav
ing principle advantage over several types of arrays 
(Figure 1) is used to study the electrical resistivity dis
tribution of the subsurface in order to understand the 
groundwater conditions. The Vertical Electrical 
Sounding provides a non-destructive, fast and eco
nomic way to study the properties of aquifers. An 
important advantage of VES method is that quantitative 
modelling is possible using either model curves or soft
ware. The resulting models provide accurate estimates 
of electrical resistivity, thickness and depth of subsur
face strata of the Earth. This array (what array?) is a 
powerful tool in the delineation of groundwater poten
tials because of its simple in nature and cost effective. 
The field procedure involves as follows: among the four 
electrodes that are used, the potential electrodes (M and 
N) remain fixed and the current electrodes (A and B) 
are expanded symmetrically about the centre of the 
spread (Figure 1,Figure 2). With very large values of 
current electrodes, however, it is necessary to increase 
the potential electrodes. Maximum half current electro
des (AB/2) separation used in this survey is 100 metres. 
Usually, the depth of penetration is proportional to the 
separation between the electrodes and varying the elec
trode separation provides information about the strati
fication of the ground. Figure 1 shows the Schlumberger 
electrode configuration.

Figure 1. Schlumberger electrode configuration for geoelectrical data collection.
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4. Fundamentals of ANFIS – theory and 
applications

The intelligent neuro fuzzy inference technique for 
data analysis and interpretation are becoming more 
powerful tools for making breakthroughs in the 
science and engineering fields by transforming the 
data into information and information into knowl
edge in recent days. Masoud Nikravesh (2004) applied 
intelligent techniques in the oil and gas industry for 
multipurposes such as risk management, uncertainty 
analysis and interpretation of geological data. Yasala 
Srinivas (2013) applied the ANFIS model to find the 
lithology of the study area. The last decade has wit
nessed significant advances in inverting geosciences 
data with associated characteristics. This has been 
made possible through improvements in data integra
tion and quantification of uncertainties.

Neuro-fuzzy modelling is a technique for describ
ing the behaviour of a system using fuzzy inference 
rules within a neural network structure. The model 
has a unique feature in which, it can express linguis
tically the characteristics of a complex non-linear sys
tem. Geoelectrical resistivity inversion problem was 
analysed using the ANFIS model, which produces 
less mean square error (Srinivas et al. 2012a, 2012b; 
Stanley Raj et al. 2014, 2015). The fuzzy modelling was 
first explored by Takagi and Sugeno (1985) and later 
ANFIS network was developed by Jang (1993).

In the present work, the electrical resistivity data 
collected using the VES (Vertical Electrical Sounding) 
method is used for training the dataset. The data 
collected from the field is the apparent resistivity, 
while on interpretation the subsurface parameters 
viz., resistivity and thickness of the individual layers 
are obtained. Trained data set is the reference data for 

interpreting the subsurface layer parameters of the 
earth. This dataset will be used to train ANFIS by 
adjusting the membership function parameters that 
best model this data, which suits best for this data.

The inherent problems in geoelectrical resistivity 
inversion that are to be overcome are as follows. 
Precautions to be taken while analysing the geoelec
trical resistivity inversion data.

● Inadequate data and field errors/noises are also to 
be considered while evaluating the subsurface 
strata of the earth.

● Framing the appropriate algorithm for inversion 
is the most important section involved in apply
ing these tools.

● Moreover, moving to a generalised approach on 
inversion, one should be very careful in validating 
the results with different field data.

The application of ANFIS algorithm for the inver
sion of VES data is demonstrated with different field 
datasets. Here, the ANFIS algorithm provides the 
necessary database needed for interpretation. 
Moreover, the best model of the trained database fits 
with the apparent resistivity of the field curve. The 
corresponding layer model is produced as an output 
with lowest root mean square error in a particular 
number of epochs.

4.1. ANFIS methodology

Initially, the data have been subjected to a certain 
degree of membership grade so that at each iterations 
the firing strength will decide the consequent 
parameters.

Figure 2. ANFIS architecture.
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ANFIS system consists of five layers; Output of each 
layer is symbolised by O 1,i with i is a sequence of 
nodes and 1 is the sequence showing the lining. Here is 
an explanation for each layer (Jang 1993), namely:

4.2. Layer 1

Serves to raise the degree of membership and the 
membership used here is Gaussian membership 
function.

O1,i = μA(x), i = 1,2 . . . .(1)

and
O1,i = μB(y), i = 1,2. . . . .(2)

with x is the AB/2 values and y is the apparent resis
tivity values chosen as the input for the i-th node for 
training, whereas, AB/2 and apparent resistivity 
values of synthetic data have been chosen as input 
and the corresponding true resistivity and depth 
values have been chosen as output values for the i-th 
node

f x; σ; cð Þ ¼ e
� x� cð Þ2

2σ2 

by {σ and c} are the parameters of membership func
tion or called as a parameter premise. σ signifies the 
cluster bandwidth, and c represents the cluster center.

4.3. Layer 2

Serves to evoke firing-strength by multiplying each 
input signal.

O2,i = wi = μA(x) x μB(y), i =1, 2. . . . .(3)

4.4. Layer 3

Normalizes the firing strength

O3,i =w= wi
w1þw2

,i =1,2. . . . .(4)

4.5. Layer 4

Calculates the output based on the parameters of the 
rule consequent {pi, qi and ri}

O4,i =wifi= wi(pix+qiy+ri). . . . .(5)

4.6. Layer 5

Counts the ANFIS output signal by summing all 
incoming signals will produce
P

i
wifi= 

P
i
wifiP
i
wi 

. . . . .(6)

ANFIS uses the input data scaling by xbounds = 
[min max] command used in MATLAB software 
which represents the scaling parameter of the input 
function that varies between minimum to maximum 
value of the data point. Each data point is scaled for 
pre processing of training initially by normalising it.

5. Results and discussion

Many hybrid systems can be built on the combin
ing platform of neural networks, fuzzy logic and 
neuro fuzzy networks. For example, fuzzy logic can 
be used to combine results from several neural 
networks; although some hybrid systems have 
been built, this present work has attained promis
ing results when combining the fuzzy logic and 
neural networks. The field validation proves that 
this algorithm can have a bright future for estimat
ing many non-linear problems. The field data cho
sen is from one of the four taluks in Kanyakumari 
district, located in the southern tip of India. The 
total region of Agastheeswaram taluk covers 279.4 
km2. It lies between the latitude 77°18′ 45″ E to 77° 
35′15″ E and 8°4′ N to 8°13′45″ N longitude. The 
area is underlain by the crystalline rocks like gneiss 
and charnockite of Archaean age. Along the coast 
the sands of recent origin are noticed. The geology 
map (Figure 3) of the study area is obtained from 
Geological Survey of India (GSI 2005). The penin
sular gneisses occupy the largest area in the district. 
The general trend of the strike of this area is in the 
N-NW to S-SE direction. Garnetiferous silliminate, 
graphite gneiss and garnet biotite gneiss are the 
two major groups identified in Kanyakumari 
district.

The groundwater occurs in almost all the geolo
gical formations like crystalline rocks, sedimentary 
formations and quaternary alluvium and beach 
sands. The groundwater occurrence in the hard 
rock region is limited to the weathered mantle of 
thickness 10–35 m below ground level. The weath
ered thickness in hard rock regions is discontinu
ous both in space and depth. Hence, the 
groundwater potentiality is influenced by the inten
sity of weathering. In the sedimentary formations 
having alluvial deposits, the water table is very 
shallow which is up to a maximum depth of 10 m 
(PWD 2005). Field data chosen from the sounding 
location 77.51397 E and 8.108833 N. Figure 4 
shows the corresponding multilayer model. 
Figure 5 shows the regressed layer model. Figures 
6 and 7 show the ANFIS rule architecture and 
membership functions, respectively. Figure 8 
shows the geoelectric section of the corresponding 
layer model.
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5.1. Performance evaluation of algorithm

The performance of the algorithm has been evaluated 
by three methods

a) Adding random noise to the data

b) Missing data values to the original field data

c) Adding gaussian noise to the data

5.2. A) Adding random noise to the data

It is very necessary for a system to be fault tolerant and 
immune to noise system to enhance the performance 
of any problem which is taken into account. Soft 
computing techniques would be the better tool to 
estimate the subsurface features more clearly than 
any other conventional methods. More positively, the 
soft computing inversion involves the knowledge- 

Figure 3. Geology map of the study area (redrawn after GSI 2005).

Figure 4. Obtained multilayer model inversion of ANFIS algorithm.
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based approach, which proclaims the self-dependent 
and pertaining algorithm to solve complex problems 
more easily. In this research work, random noises were 
added to the original field data with 5%, 10%, 20% and 

40% to check the performance of the algorithm. The 
results are shown in Figures 9, 10, 11 and 12, respec
tively, for corresponding the noise percent added. The 
results demonstrate that the layer model inversion has 

Figure 5. Obtained regressed layer model inversion of ANFIS algorithm.

Figure 6. ANFIS rule architecture.
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been oscillating while increasing the noise percent. 
Finally, by adding above 50% noise, the system 

becomes unstable. For fixing the solution, ANFIS 
tries to fix the membership functions of different 
range and the number of rules increment as shown 
in Table 1. Thus, it proves that the entire algorithm 
itself oscillates for fixing the layer model, the litholog 
information of the log doesn’t vary to maximum error 
percent. This verifies the ANFIS algorithm tries to 
maintain the linearity throughout the program by 
adjusting the membership function (gaussian mem
bership function is used here). It takes much time in 
fixing the layer model when increasing the noise per
cent. But the result showed that only below 20% noise 
level, the system can interpret the layer model more 
quickly and efficiently with minimum error percent. 
So for rapid inversion of optimising the problem, the 
system should have maintained the noise percent 
below the respective value.

5.3. B) Missing data values (by random data 
deletion)

The performance of the algorithm was further tested 
by random data deletion. Similar to the noise inter
vened data, the system is subjected to missing data 

Figure 7. Membership functions mapped between the input and output data.

Figure 8. Geoelectric section of the corresponding layer 
model.
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values by removing the data randomly from the origi
nal filed data which is feed as an input.

When 20% of data missing is made, it doesn’t 
bring a major problem for inversion. It performs 
well at this particular stage. But while going beyond 

the 20% missing data, the system subjected to oscilla
tion and takes more time for fixing the result. The 
system cannot interpolate the nearby missing values 
of the data when the missing data level reached 40%. 
This result is not similar to the noisy data result 

Figure 9. Layer model inversion result for five percent random noise added to the input data.

Figure 10. Layer model inversion result for ten percent random noise added to the input data.
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because in the earlier attempt the performance of the 
algorithm was maintained constantly up to 40%. The 
constraint in missing data interpretation is that, 
when it goes beyond the 20% missing data values, 
more number of data has to be added to retrieve the 

information clearly. This is the prominent result that 
this kind of interpretation is directly proportional to 
the number of data. More the number of data, the 
error percent is low and the inversion hails more 
performance.

Figure 11. Layer model inversion result for twenty percent random noise added to the input data.

Figure 12. Layer model inversion result for forty percent random noise added to the inputdata.
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Thus, the ANFIS performance level on comparing 
to noisy data and missing data interpretations are 
pretty good. At each and every stage the performance 
level has been checked with Root Mean Square Error 

(RMSE). The algorithm itself possibly tries to reduce 
the error percent and it is legible to work in this plat
form to interpret such data than to rely on a conven
tional approach.

Figure 13. Layer model inversion result using ANFIS for 20% gaussian noise added to the input data.

Figure 14. Layer model inversion result using ANFIS for 60% gaussian noise added to the input data.
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5.4. C) Adding gaussian noise to the data

In most of the geophysical inversion techniques, we 
will perpetually suffer several kinds of noise which 
are observed from the field and distort the original 
data. In this attempt, gaussian noise was added to 
the original data step by step from 10% to 80% and 
the results were studied in the case of ANFIS inver
sion. This proves the stability of the algorithm and 
its robustness when it is subjected to numerous 
attempts of noise intervened data training.

In previous attempts by various researchers, the 
problem of generalisation and choosing initial 
model parameters in resistivity inverse problems 
was difficult (Ghosh 1971; Zohdy 1989; Qady and 
Ushijima 2001; Singh et al. 2005; Ekinci and 
Demirci 2008; Carlos et al. 2000). Maiti et al. 
(2011) tried a hybrid Monte-Carlo-based approach 
with neural networks for inversion of data in for
ward modelling technique. But in direct inversion, 
this algorithm proves to be the worthwhile in 
inverting the layer model quickly and efficiently. 
This effort was made successful when the inversion 
of data with the present algorithm was compared 
with the conventional data interpretation. Figures 
13, 14 15 16 17 18 and 19 show the gaussian noise 
added to the original resistivity data with Signal to 
Noise Ratio (SNR) is 20%, 60% and 80% respec
tively. Above 50% the ANFIS system is unstable. 
Thus, it is revealed that the data within 50% of 

noise can be interpreted successfully by the 
designed ANFIS algorithm.

After this research, the data chosen from the 
Kanyakumari field was taken to invert using this well- 
performed algorithm. Profile 1 has been chosen in the 
Latitude, Longitude of VES 1–8° 7ʹ 34.7988ʹ’ N and 77° 
20ʹ 0.0240ʹ’ E, VES 2–8° 7ʹ 31.4004ʹ’ N and 77° 20ʹ 
17.4120ʹ’ E, VES 3–8° 7ʹ 27.5016ʹ’ N and 77° 20ʹ 
37.5000ʹ’ E, VES 4–8° 7ʹ 24.6000ʹ’ N and 77° 20ʹ 
52.9080ʹ’ E, VES 5–8° 7ʹ 17.7996ʹ’ N and 77° 21ʹ 
33.9840ʹ’ E. The inversion result with pseudo cross- 
section and thickness of the subsurface layer is shown 
in Figure 16. Tables 2 and 3 show the respective profile 
for ANFIS inverted result and its longitudinal resistivity 
variations, respectively.

5.5. Error estimation

L1 norm error estimation is used to minimise the 
errors while iteration. This method finds applications 
in many fields because of its robustness compared to 
L2-norm. L2-norm squares the error and thus the 
model is much more sensitive in the case of applying 
noisy data. If the amount of noise present in the data 
is above a certain percentage as calculated from the 
gaussian noise observations in this study, then the 
model will be unstable in such cases.

Overfitting problems in ANFIS are avoided by 
fixing the permissible error percentage to 

Figure 15. Layer model inversion result using ANFIS for 80% gaussian noise added to the input data.
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minimum (below 10% in this study). The permis
sible error was fixed by the user to choose the 
appropriate model parameters while iteration.

6. Conclusions
This kind of geophysical optimising problem includ
ing the noise and missing data values which works well 
with the soft computing approach. Noise and missing 
data are the major problems in geophysical data acqui
sition. Mainly, if the field area chosen to study is 
vulnerable or cannot be accessible clearly or more 
noises in the field regions, it would be better to opt 
for such intelligent techniques for inversion. The 
developments and advancements in the field of inver
sion which is dependable on the intelligent technique 
will possibly give the correct definition of the subsur
face layer model. In these aspects of learning, the 
adaptive algorithm becomes accustomed itself for 
any kind of field data. The results of the research 
work are summarised below

1) The program concerns on the generalised inver
sion than the conventional ANFIS algorithm inver
sion. The major difference between the two 
approaches is, in the earlier we need more number of 
field data that has been subjected for network training. 
The solution depends on the number of datasets 
involved in training. But in the later part it is not 
necessary to have more number of data but the net
work itself will generate more number of datasets and 
it indirectly supports the performance of the algo
rithm. So this would be the semi-supervised algo
rithm. Moreover, it depends on the number of 
epochs which plays a major role in generating a large 
number of synthetic datasets necessary for inversion.

2) This research work concentrates mostly on the 
performance of the algorithm by considering (a) 

number of epochs, (b) Error percent, (c) Number of 
rules assigned to each iteration and (d) Computational 
time.

3) The algorithm framed on the generalised plat
form and tested with the noise intervened data and 
missing data values. Performance analysis was 
made to check the algorithms reflection on the 
disturbed data.

4) The tested algorithm was finally subjected to 
coastal data inversion and it proclaims the best algo
rithm for inverting any non-linear data. Thus, this 
algorithm would be the best noise reduction algorithm 
and efficient in picking the information necessary for 
inversion.

5) Different models can be generated while testing 
the ANFIS algorithm at each number of iterations 
within a limit of a particular error percent. The more 
appropriate model with less error percentage can be 
chosen as the reliable model.

6) In general, large number of datasets collected from 
a particular study area is

used to train the soft computing methods, and the 
remaining data is used to test. However, the training 
datasets are generated by changing weights and mem
bership functions based on the field data in the present 
concept. Thus, this approach can be applied to invert 
the VES data collected from any study area.

7) The conventional geophysical inversion techniques 
can be improved by using a

certain kind of soft computing techniques. Increasing 
the number of trained datasets by increasing the num
ber of iterations (since each iteration will produce a 
different layer model), the ANFIS will converge with 
the result and make the output to flow towards a 
distinctive solution. The ANFIS can also be applied 

Figure 16. ANFIS inverted pseudocross section profile.
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to 2D and 3D inversion problems with certain con
trolling parameters such as learning rate, momentum, 
the number of iterations and error percent. Training 
database and acquiring knowledge are accomplished 
to the best by ANFIS algorithm. More reliable perfor
mance of ANFIS technique will have the best scope in 
the future for estimating many optimisation problems.
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