
Investigation of geothermal potential of the Dahomey basin, Nigeria, through 
analysis of geomagnetic and geo-resistivity dataset
Sunday Oladele, Elijah A. Ayolabi, Samuel B. Olobaniyi and Caroline O. Dublin-Green

Department of Geosciences, University of Lagos, Lagos, Nigeria

ABSTRACT
Geothermal resource has attracted industrial and environmental interest in the last decades. 
However, the thermal condition of the Dahomey basin, which is instrumental to harnessing 
such geothermal resource, has remained largely unknown. The geothermal characterisation of 
Dahomey Basin was therefore undertaken to determine its thermal potential. The methodol
ogy involved analysis of the power spectra density of aeromagnetic data and interpretation of 
geo-resistivity data. The aeromagnetic dataset was divided into twenty one blocks with each 
block overlapping the adjacent blocks by 50%. Spectra peak, Curie depth, geothermal gradient, 
heat flow and temperature at depth were computed. Two-dimensional geo-resistivity profiling 
method was implemented to locate the top of the thermal aquifer. The results showed varied 
Curie depth (11–27 km) and heat flow (53–130 mW/m2) while the geothermal gradient ranges 
from 21 to 52 °C/km. Results of resistivity profiling showed the thermal aquifer to be sand (1–20 
Ωm) whose top is located at 155 − 210 m depth. From the estimated geothermal parameters, 
two new geothermal prospect areas were identified. This study established that Dahomey 
basin is a thermally unstable basin with a very high potential for geothermal resource that is 
attributable to crustal thinning and possibly mantle dynamics.
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1. Introduction

Exploration of geothermal potential of a region via 
analysis of variations in Curie Point Depth (CPD) 
has attracted considerable interest in literature 
(Espinosa-Cardeña and Campos-Enriquez 2008; 
Rajaram et al. 2009; Trifonova et al. 2009; Karastathis 
et al. 2011; El-Nabi 2012; Arnaiz-Rodríguez and 
Orihuela 2013; Bakak et al. 2015; Akbar and 
Fathianpour 2016; Bilim et al. 2016; Khojamli et al.  
2016; Lichoro et al. 2019). Growing environmental 
consciousness over hydrocarbon consumption in the 
recent time has motivated awareness in environmental 
friendly energy supply such as geothermal energy. The 
Dahomey basin (Figure 1) is located in the southwest 
Nigeria where volcanicity and seismicity are rare. 
Several boreholes (Figure 2) located within this basin 
have however encountered thermal water. In spite of 
this observation, the knowledge of thermal condition 
of the basin which is instrumental to exploitation of 
such geothermal resource has remained poor till date.

Crustal rocks exhibit varying degrees of magnetism. 
This magnetic property can however be lost at certain 
depth known as the Curie depth point depth (CPD). 
Calculating the CPD and identifying regions where the 
crust is thin are considered vital in exploration of 
geothermal assets. Curie temperature has been estab
lished to range between 500°C and 600°C for the 
upper lithosphere (e.g. Nagata 1961; Okubo et al.  

1985; Tsokas et al. 1998: Chiozzi et al. 2005; Manea 
and Manea 2011). At elevated temperature higher than 
Curie’s, magnetic minerals change from ferromagnetic 
to paramagnetic condition. Diamagnetic and para
magnetic states do not contribute to the magnetic 
field of the earth (Nagata 1961; Chiozzi et al. 2005; 
Manea and Manea 2011). Information about CPD can 
be obtained through analysis of the low-frequency 
component of earth’s magnetic data. The CPD-based 
data can therefore be employed to interpret the regio
nal geothermal configuration of an area. Geothermal 
resources are beneficial in that they are localised, 
renewable and environmentally friendly. Exploration 
of these geothermal resources is conventionally based 
on direct and indirect methods.

Direct method entails measurement of temperature 
in boreholes via specialised equipment (e.g Ebrahimi 
et al. 2019). However, this method is expensive and 
cumbersome due to paucity of thermally well- 
equilibrated boreholes. Direct method is also proble
matic in dealing with white noise. Indirect methods 
entail remote measurement of temperature with geo
physical method such as magnetometry (Okubo and 
Matsunaga 1994). When compared to the direct 
method, indirect methods are cheap, fast and offer 
a wider coverage.

The utilisation of the magnetic method in Curie 
depth interpretation is predicated in the work of 
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Bhattacharyya (1966) and proliferated by several 
authors (e.g. Spector and Grant 1970; Mishra and 
Naidu 1974; Byerly and Stolt 1977; Connard et al.  
1983; Blakely 1995; Hamdy and Khaled 2009)

(Tanaka et al. 1999; Salem et al. 2000: Saibi et al.  
2015; Bilim et al. 2017; Lichoro et al. 2019) among 
others. These workers determined CPD through ana
lysis of power spectrum of magnetic anomalies.

Power spectrum offers a reasonable connection 
linking the power spectrum of magnetic anomaly 
and the magnetic ensemble depth through Fourier 
conversion of the magnetic records to frequency 
domain. Ravat et al. (2007) discussed techniques that 
are typically used to estimate the CPD. They include 
centriod technique (Bhattacharya and Leu 1975; 
Okubo et al. 1985, 1989; Tanaka et al. 1999; Ibrahim 
et al. 2005), the spectral peak approach (Spector and 
Grant 1970; Shuey et al. 1977; Connard et al. 1983; 
Blakely 1995, 1995; Ross et al. 2006; Rajaram et al.  
2009; Bilim et al. 2016), power law correction 
(Pilkington and Todoeschuck 1993; Maus and Dimri  
1995; etc.). The spectral peak approach was employed 
in this study due to its capability to indicate the appro
priateness of the data at hand for CPD analysis. It is 

inappropriate to determine CPD if the signals in a data 
are significantly contributed from shallow sources 
(Rajaram et al. 2009). Interpretation of CPD is only 
achievable if the source bottom is measurable. In 
spectral peak method, a distinct spectral peak occurs 
when the extents of the chosen windows are suffi
ciently large and the source bottom is measurable 
(Bhattacharyya 1966; Salem et al. 2000). This approach 
enjoys simplicity in application, reproducibility, accu
racy and production of geologically plausible informa
tion (Bilim et al. 2016). On the other hand, electrical 
resistivity disparity that exists between subsurface 
lithologies is often employed to differentiate between 
aquiferous and non permeable horizons (Dodds and 
Ivic 1988; Lashkarripour 2003; Delhaye et al. 2019; 
Mandal et al. 2019). Accordingly, electrical resistivity 
method will prove a veritable tool in identification of 
the thermal aquifer in the study area.

CPD mapping to determine geothermal potential 
has been extensively employed in various regions 
across the globe (e.g Shuey et al. 1977; Onwuemesi  
1997; Stampolidis and Tsokas 2002; Li, 2011; Ates, 
et al., 2005; Dolmaz et al. 2005; Ibrahim et al. 2005; 
Tanaka and Ishikawa 2005; Chiozzi et al. 2005; Bilim,  

Upper
Ben

ue

Middle Benue

L
o
w

er
B
en

u
e

A
n
am

b
ra

b
as

in

Niger Delta

Mid- Niger (Bida) basin

Sokoto
basin

Chad (Borno) basin

B
E
N
IN

CAMEROON
ATLANTIC OCEAN

NIGER C
H
A
DSokoto

Minna

Kaduna
Bauchi

Abuja

Ilorin

Kano

Jos

Lokoja

Ibadan

Akure

Benin

Warri

Port Harcourt
Calabar

Leru

Lafia

Yola

Lagos

Enugu

Maiduguri

Lake
C
had

BF

CF

10°
5°E

10°

5°N

BF
CF

Tertiary-Holocene sediments

Tertiary volcanics

Cretaceous

Benin Flank

Calabar Flank

Jurassic younger volcanics

Precambrian basement

Major (references) town

200km
Study  
Area

Figure 1. The study area located on Nigeria geological map (Modified After Obaje 2009).
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2011; Karastathis et al. 2011; Bektaş 2013; Obande 
et al. 2014) however, the knowledge of the Dahomey 
basin geothermal potential remains unknown due to 
paucity of exploration in that regard. In spite of exis
tence of artesian thermal wells in the basin, little or no 
attention has been paid to the thermal conditions of 
this basin. Therefore, this work is committed to 
appraise the geothermal potential of the basin through 
application of spectral peak analysis of aeromagnetic 
and geo-resistivity data acquired from the study area.

2. Geology

The study district lies within the Dahomey basin 
(Figure 2) and has no basement rock outcrop. 
Comprehensive discussions of the geology of the 
Dahomey basin have been done by many researchers 
which include Jones and Hockey (1964); Ogbe (1972); 
Omatsola and Adegoke (1981); Frankl and Cordry 
(1967); Whiteman (1982); Adediran and Adegoke 
(1987).

The origin of the Dahomey basin has been 
linked with the parting of African and South 
American plates following the rifting that opened 
up the Atlantic in the Mesozoic. Basement fractur
ing happened in the Jurassic to Cretaceous which 
led to block faulting, disintegration and sagging of 
basement rocks (Adediran and Adegoke 1987). The 

drift stage trailed in the Upper Cretaceous to 
Tertiary with episodes of block faulting which sub
sequently developed to horst and graben structure 
(Omatsola and Adegoke 1981). In the Santonian 
(late Cretaceous) there was occurrence of folding, 
tilting and block faulting probably related to rela
tive slippages of two parts of the African plates 
(Burke et al. 1971). Existing boreholes located 
close to fault lines have encountered hot water 
and mineralisation such as sulphides as pyrites 
and galena, both of which are associated with 
faulting.

Oladele and Ayolabi (2014) estimated basement 
depth range of 0.183–6.3870 km in the basin while 
Coker and Ejedawe (1987) and Zaborski (1998) 
observed a consistent increase in basement depth 
in strike direction at the Nigeria – Benin Republic 
border in a manner typical of horst and graben 
structures. Cretaceous succession of Dahomey 
basin started with the Abeokuta Group, which 
is made up of Ise, Afowo and Araromi 
Formations.

2.1. Theory of Spectral Peak Analysis

The power spectrum of magnetic field anomaly (∆Txy) 
in Fourier domain was introduced by Blakely 
(1995) as: 
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Figure 2. Geological map of Dahomey basin with locations of the thermal wells.
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ΦΔT kx; ky
� �

¼ ΦM kx; ky
� �

:4π2Cm
2 θmj j

2 θf
�
�
�
�2e� 2 kj jZt 1 � e� kj j Zc � Ztð Þ

h i2
(1) 

This equation stands for 2-D power spectrum of 
potential field averaged within rings that share com
mon origin. ФΔT and ФM are spectra density of the 
total field and magnetisation correspondingly. Cm is 
the proportionality constant while k is the wavenum
ber (k2 ¼ kx

2 þ ky
2, kx and ky are the wave numbers in 

their respective directions), Zt and Zc are the respec
tive depths to top and base of the source. The equation 
can be simplified by noting that all terms except 
θmj j

2and θf
�
�
�
�2 are radially symmetric and that radial 

averages of Ɵm and Ɵf are constants.
Transformation of Eq. (1) to 1-D power spectrum 

will give: 

ΦΔT kj jð Þ ¼ AΦM kj jð Þe� 2 kj jZt 1 � e� kj j Zc� Ztð Þ
h i2

(2) 

Where A is a constant that depends on Ɵm and Ɵf and 
k is the wave number.

If the magnetisation ðM x; yð Þ is entirely arbitrary 
and unconnected, ΦM kx; ky

� �
is an invariable 

Equation (2) can then be written as: 

ΦΔT kj jð Þ ¼ Be� 2 kj jZt 1 � e� kj j Zc� Ztð Þ
h i2

(3) 

B is a constant. This equation represents 1- 
D spectrum of the field and is characterised by 
a maxima whose position is dependent on depth to 
top and base of the magnetic source and whose ampli
tude is a function of source magnetisation. Equation 
(3) becomes equation (4) when the natural logarithm 
of equation (3) is taken. 

lnΦΔT kj jð Þ ¼ lnB � 2 kj jZt þ 2log 1 � e� kj j Zc� Ztð Þ
h i

(4) 

Where (Zc – Zt) is the depth extent of the source. At 
less than 2 (Zc – Zt), the curve of equation (4) behaves 
as a straight line whose gradient is the same as −2Zt. 
According to Blakely (1995), depth to source top can 
subsequently be obtained from the spectrum of the 
observed magnetic field (ΔTxy).

The spectral peak of infinitely deep prism occurs at 
wavenumber zero (Bhattacharyya 1966). Prism of a finite 
top and base will produce a peak (Kmax) in the power 
spectrum. When this happens, it signifies that the source 
base is measurable. The peak wave-number is associated 
with the depth base and top of the magnetic entity, Zc 

and Zt, by the following relation (Blakely 1995): 

Kmax ¼
lnZC � lnZt

Zc � Zt
(5) 

The peak in the spectrum would be observed at wave
number k > kf, where Kf is the fundamental wavenum
ber: 

Kf ¼
2π
W (6)

3. Methodology

3.1. Aeromagnetic data

The data utilised for this study is part of 2005 aero
magnetic survey carried out by Fugro for Nigeria 
Geological Survey Agency. The data is characterised 
by Flight and tie line spacing of 500 m and 2 km in 
NW-SE and NE-SW respectively with 80 m terrain 
clearance. The International Geomagnetic 
Reference Field (IGRF) for year 2005 has been 
subtracted from the data.

To carry out the geothermal characterisation of the 
study area, the aeromagnetic data was transformed to 
the equator using inclination of −12.715° and declina
tion of −2.763°signifying the geomagnetic parameters 
at the centre of the study area. Determination of depth 
to magnetic source bottom (Zc) is usually difficult 
because the signals from the shallower (Zt) parts typi
cally saturate power spectral at all wavelengths. To 
minimise this difficulty, the reduced to the Equator 
(RTE) grid was upward continued (2 km) to accent
uate spectral from bottom depth at the expense of 
shallow sources contributions before computing the 
power spectrum of the aeromagnetic grid. The 
smoothened grid was carved up into 21 overlapping 
blocks, each having 55 × 55 km dimension (Figure 3). 
This size was selected after a number of trials, being 
the grid at which obvious spectral peak occurs in the 
power spectra, signifying a detectable source bottom. 
Every block partly covers half of the flanking blocks.

3.2. Calculation of power spectrum

The spectral of each block was calculated using power 
spectrum algorithm of Oasis Montaj (Geosoft (Oasis 
Montaj) 2007).

3.3. Curie-Point Depth (CPD) Estimation

Spectral Peak approach of Blakely (1995) was adopted 
in the determination of CPD. This method involved 
determination of wavenumber of the spectral maxi
mum (Kmax) and evaluation of depth to deep seated 
magnetised source top. Depths to top of sources (Zt) 
were determined from the low wavenumber section of 
the power spectrum. The average CPD (Zc) was com
puted through the use of Kmax and Zt depth values for 
each sub-region using the equation by (Blakely 1995) 

Kmax ¼
lnZC � lnZt

Zc � Zt
(7) 

Where ln represents the natural logarithm, Kmax 

signifies spectral peak; Zt and Zc are mean depth to 
top and base (Curie point depth) of magnetic sources 
respectively. The resulting CPDs were gridded and 
contoured to produce the CPD map of the study 
area. It has been established that Curie point depth 
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that is shallower than 10 km are usually designated as 
geothermal anomalous zones (Tanaka et al. 1999). The 
vertical thermal gradient of the blocks were computed 
thermal supposing that magnetite (Curie tempera
ture = 580°) is the dominant magnetic mineral in 
those rock. 

Vertical Thermal Gradient
dT
dZ

� �

¼
5800C

ZC
(8) 

Determination of heat flow was accomplished through 
the heat equation of Fourier’s law (Turcotte and 
Schubert 1982; Artemieva and Mooney 2001) 

q ¼
dT
dZ

� �

(9) 

Where q, k, T and Z are heat flow, coefficient of 
thermal conductivity, temperature and Curie depth 
respectively. The assumption in this equation is that 
temperature varies vertically and its gradient (dT/dZ) 
is constant. For this work, anomalous geothermal con
dition was attributed to values greater than 100 mW/ 
m2 (Jessop et al. 1976). Regions of high heat flow were 
demarcated as geothermal prospective zones. The 
thermal conductivity 2.1 Wm−10C−1 was adopted as 
recommended by Tezcan and Turgay (1991).

Having assumed a linear temperature changes 
within the earth (Onwuemesi 1997), temperature at 
depth h of interest was computed as 

Th ¼ mhþ T0 (10) 

Where Th = temperature in 0C at depth 
(h), m = geothermal gradient, To = surface tempera
ture (assume to be 27°C). Using the geothermal gra
dient of each block, the corresponding Temperature at 
1 km depth was computed. The depth to bottom of 
magnetised source was interpreted as CPD.

3.4. Delineation of thermal aquifer

With a view to map depth to the top of thermal 
aquifer, geo-electric strata in the study area were 
imaged through geo-resistivity method. The geo- 
resistivity survey was carried out using a SuperSting 
R8-IP Resistivity metre comprising of 84 electrodes 
separated by 10 m spacing. Pole-Dipole configuration 
was employed for data acquisition because it provides 
a blend of good depth penetration and lateral resolu
tion. The infinite electrode for the Pole-Dipole config
uration was at over 1000 m from the first electrode. 
The raw data retrieved from the equipment was pro
cessed to generate the 2-D resistivity tomography. 
Interpretation of 2D resistivity tomography was inte
grated with available gamma ray logs.

4. Results and discussion

Figure 4 portrays samples of spectra of magnetic data 
of blocks (blocks 1, 5, 11 and 21) with their 
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Figure 3. Reduced to the equator (RTE) map has been subtracted from the data). Blocks are indicated by the figure at its centre. 
The coastline (thick black line) has been superimposed.
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corresponding depth estimates. They show character
istic decay of power with increasing wavenumber. The 
frequency Kmax, average source top depth (Zt) and 
average source base depth (Zc) for the study area are 
presented in Table 1.

4.1. Curie point depth and heat flow

The CPD map of the study area (Figure 5) reveals two 
shallow CPD zones: the central area of the Lagos 
metropolis (Ikeja and Ikorodu) and the other in the 
northeast of Igbonla. The two shallow CPD regions are 
named Lagos and Igbonla geothermal prospects 
respectively. This observation is most likely related to 

a thin crust necessitated by rifting associated with the 
opening of the basin. The Lagos thermal dome in the 
centre of the study area gradually diminishes towards 
east and west directions. The thermal anomaly is 
about 50 km wide in E-W direction and extends out
side the coverage of the map in N-S directions respec
tively. The map shows that the shallow CPD regions 
are strikingly correlated with thermal water wells 
(Figure 5) thus suggesting that the occurrence of 
geothermal water in those areas except the Afowo 
Well is genetically related to shallow Curie depth 
observed in the area.

The presence of thermal water in Afowo Well may 
be due to transmission of thermal water from the 
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Figure 4. Radially Averaged Power Spectral of Representative Blocks 1, 5, 11 and 21 with their Corresponding Depth (Zt) Estimates.

Table 1. Spectra peak (Kmax), average source top depth (Zt) and average source base depth (Zc), 
geothermal gradient (GRAD) and heat flow.

Block No Kmax (Cycle/km) Zt(km)
Zc(CPD) 

(km)
GRAD 

(0C/km)
HEAT FLOW 

(mW/m2)

1 0.0136 4.68 24 25 61
2 0.0158 4.30 20 30 74
3 0.0153 6.25 16 36 90
4 0.0152 6.33 16 36 90
5 0.0144 4.71 21 27 68
6 0.0184 5.85 12 47 119
7 0.0179 6.01 13 46 115
8 0.0121 5.19 27 22 54
9 0.0140 5.76 20 29 73
10 0.0199 5.50 11 52 130
11 0.0145 6.90 16 35 88
12 0.0150 4.77 20 29 73
13 0.0079 7.20 19 30 74
14 0.0121 4.97 27 21 53
15 0.0129 5.21 24 24 60
16 0.0068 6.66 19 30 75
17 0.0152 5.74 17 34 84
18 0.0147 6.22 17 34 84
19 0.0145 6.25 18 33 82
20 0.0145 5.17 20 29 72
21 0.0183 4.55 15 39 98
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region of thermal dome to Afowo well by some of the 
fractures in the area.

The heat flow map with superimposed thermal well 
locations is shown in Figure 6. The heat flow gen
erally varies from 53 to 130 mWm-2 and shows the 
expected inverse relationship with the CPD. 
Yamano (1995) observed that shallow CPDs are in 
agreement with elevated heat flow. Elevated heat 
flow exists in Ikeja, Ikorodu and Igbonla areas in 
the central and northwestern regions respectively, 
while the western region is essentially characterised 
by low heat flow. The mean heat flow in the crust 
is about 60 mW/m2 and records above 80– 
100 mW/m2 point to thermal anomaly situation 
(Jessop et al. 1976). The thermal water wells are 
in striking association with areas of high heat flow 
except the Afowo well.

The chart of heat flows (q) versus Curie point 
depths (Zc) values (Figure 7) shows hyperbolic 
relationship named Ayolad thermal equation: 
Zc = 0.002q2 – 0.613q + 52.91.

Zones of shallow CPD in the study area are asso
ciated with high temperature gradients (Figure 8) 
which is above the normal geothermal gradient of 
30°C/km. Therefore, this district shows potential for 
possible exploitation of geothermal resource. The 
geothermal gradient is highest within the Lagos gra
ben and is envisaged to have been strongly influenced 
by the thermal dome of the Lagos geothermal system. 
Appropriate geothermal gradient within the basin 
would have aided generation of hydrocarbon. Staplin 
(1977) noted that the range of hydrocarbon generation 
is from 65°C to 145°C for oil and up to 165° for gas 
respectively. This temperature range will be obtainable 

Figure 5. Curie depth map. The coastline and thermal well locations are superimposed on the map.

Figure 6. Heat flow map. The coastline and some thermal wells locations are superimposed on the map.
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at depth between 1 to 2.2 km. Given that the sediment 
thickness is up to 4 km within the Lagos graben, 
thermal maturity of the hydrocarbon source rock 
within the graben is therefore expected. This observa
tion further laid credence to the high petroleum pro
spectivity of the Lagos graben. Figure 9 shows the map 
of estimated temperature at 2 km depth. At 2 km 
depth temperature varies from 72 to 134 °C. High 
temperature is observed at the locations of the earlier 
delineated thermal domes.

4.2. Geothermal prospect and structural system

Superposition of the principal structures mapped in 
the study area (Oladele et al. 2016) on the CPD map 
(Figure 10) shows that the fractures are cutting 
through the thermal anomalies. The structures which 
vary in length and directions will have significant 

influence on hydrothermal reservoir and the existence 
of thermal water in areas far from any of the geother
mal domes. The faults and fractures that cut across the 
Lagos and Igbonla geothermal prospects (Figure 10) 
will provide permeability and buoyancy around the 
geothermal prospects. Fluid flows in geothermal reser
voirs occur mainly through fractures of various 
lengths and widths (Grant and West 1965). The pre
sence of thermal water in Afowo Well may be due to 
transmission of water from the region of thermal 
dome to Afowo well by some of the fractures in the 
study area. These structures will generally increase the 
permeability of rocks and control the flow of fluid.

4.3. Correlation between depth map and CPD

Figure 11 shows the superposition of CPD map on the 
depth to basement map (Oladele and Ayolabi 2014). 
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Figure 7. Curie depth versus heat flow plot for Dahomey Basin.

Figure 8. Simplified thermal gradient map of the study area.
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This map revealed that the central thermal dome is 
related to the area of basement depression known as 
Lagos graben. There is thick sediment (4 km) above 
this shallow CPD zone. This area has been tectonically 
inactive and in general has had no intrusive or extru
sive activity. The association of shallow CPD with 
deepest parts of the basin suggests that there is genetic 
relationship between the thermal anomaly and the 
process that produced the Lagos graben (rifting). The 
present CPD may only reflect a stage in which the 
crust is reaching a geothermal stability.

4.4. Identification of thermal aquifer

2-D resistivity tomography result correlated with 
gamma ray logs (Figure 12) revealed the existence 

of five layers: sandy clay (20–500 Ωm), clay/shale 
(10–40 Ωm), sand (150–1500 Ωm), limestone (20– 
80 Ωm) and sand (1–20 Ωm). The sand (1–20 Ωm) 
was interpreted as thermal aquifer due to its low 
gamma ray and low resistivity responses. The ther
mal aquifer horizon in these boreholes is regarded 
as Ise and Araromi formations which are members 
of the Abeokuta Group. The thermal aquifer is 
generally encountered at depth greater than 200 
metres. Variation in depth to the top of the aquifer 
might have been caused by multiple dip slip faults 
that segmented the aquifer at different locations. 
The temperatures of the water produced from 
these aquifers ranged from 46–80 °C. In places, 
the groundwater occurs in artesian and sub- 
artesian conditions.

Figure 9. Map of temperature estimate at 2 km depth.

Figure 10. Superposition of structures (Oladele and Ayolabi 2014; Oladele et al. 2016) on the CPD map.

NRIAG JOURNAL OF ASTRONOMY AND GEOPHYSICS 381



4.5. Origin of thermal water

The thermal domes are viewed to be associated 
with lithospheric stretching which leads to the thin
ning of the of the crust and consequently, rifting/ 
block faulting and asthenospheric upwelling. The 

uplifted asthenosphere brought hot magmatic melt 
unusually closer to the surface and this has been 
dissipating heat to the water hosted in overlying 
aquifers. Perforation of this deep aquifer will 
usually result in mining of thermal water as 
observed in deep thermal wells around Lagos.
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Figure 11. Superposition of depth to basement contours (Oladele and Ayolabi 2014) on CPD map.
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Figure 12. 2-D resistivity tomography, correlated with gamma ray logs, showing the geoelectric layers and the top of the thermal 
aquifer.
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4.6. Geothermal model

On the basis of results earlier presented, the Dahomey 
Basin geothermal model (Figure 13) is hereby pro
posed. According to Mary and Mario (2004), hydro
thermal systems generally consist of heat source, 
aquifer, recharge and conduits (e.g fractures and 
faults). The heat source in this basin is the mantle 
dome arching to shallow depth due to crustal thin
ning. The reservoir rock is the permeable conglom
eratic Ise Formation which lies uncomformably on the 
basement. The Afowo shale (impermeable cap rock) 
overlay the Ise Formation, thus making it a confined 
thermal aquifer. The water in the aquiferous Ise 

Formation mine heat from the underlying heat source 
and circulate same. The aquifer is partly recharged by 
percolating meteoric water and water from the 
Atlantic Ocean. The delineated subsurface network 
of fractures and faults serve as the conduits for migra
tion of hydrothermal fluid.

5. Conclusion

Occurrence of several thermal water producing bore
holes around the Dahomey basin, southwestern 
Nigeria, remains largely uninvestigated to date. This 
study has produced the geothermal characteristics of 

Figure 13. Conceptual model proposed to explain the occurrence of thermal water in Dahoey Basin. A:Opening of the Atlantic 
Ocean and formation of transform faults B: Lithospheric strectching/continental thinning C: Asthenospheric upwelling D: Faulting 
(rifting) and differential subsidence.

NRIAG JOURNAL OF ASTRONOMY AND GEOPHYSICS 383



the Dahomey basin for the first time in literature. The 
reported characteristics are based on the spectral inter
pretation of aeromagnetic and geo-resistivity data. 
Dahomey basin is characterised with CPD values (11– 
27 km), geothermal gradient (21–52 °C/km) and heat 
flow (53–130 mW/m2). Two prospective geothermal 
anomalous regions are present in the basin: The 
Lagos anomalous region which coincides with Lagos 
graben and the Igbonla anomalous region which coin
cides with area characterised by interconnected system 
of deep faults running through the area. 2D resistivity 
results revealed geo-electric layers which include 
a thermal sand aquifer whose top lies at depth ranging 
from 155 to 200 m. The mechanism responsible for the 
elevated heat flow is believed to be associated with rift 
induced magmatism. The crust is possibly heated by 
hot materials transported upward by convection in 
response to thinning and sagging of the crust. This 
study therefore presents Dahomey basin as having 
great and exploitable potential for geothermal resource.
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