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ABSTRACT
The current work utilising machine learning algorithms to investigate the precursor that 
follows halo coronal mass ejection (CME), eventually leading to moderate geomagnetic storms 
on the 3rd and 4th of February 2022. The methodology involved developing and testing a 
machine learning model on collected data, implemented with a Gradient Boosting Regressor 
(GBR) technique. The GBR algorithm demonstrated strong performance, yielding high accuracy 
and precision over various error metrics. These findings underscore the potential of machine 
learning methods to effectively estimate geomagnetic storms. Specifically, they position the 
GBR algorithm as an optimal choice for this prediction task, outperforming other evaluated 
options. This study provides evidence for the suitability of the GBR regressor for reliable SYM-H 
index modelling. These results show that geomagnetic storms may be directly predicted from 
solar wind parameter data, with a lead time of several days for forecasting, which is important 
for improving space weather forecasts. According to the study, using the GBR regressor model 
improves the performance to up to 95%.
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1. Introduction

The Earth’s magnetic field interacts with charged par
ticle currents carried by the solar wind to form geo
magnetic storms. The most frequent cause of 
geomagnetic storms is a region of weak magnetic 
field on the surface of the Sun called coronal mass 
ejections (CMEs), which are massive expulsions of 
plasma and magnetic field from the Sun’s corona or 
a corotating interaction in a zone dominated by the 
solar wind Gonzalez et al. (1999). Solar disturbances 
produce a charged particle stream that is carried by the 
solar wind. The exact speed of the solar wind and the 
southern direction of the interplanetary magnetic field 
(IMF) determine the extent of the interaction between 
the Earth’s magnetosphere and anomalies of the solar 
Varela et al. (2022). It is commonly recognised that the 
stronger the interaction, the greater the fluctuation in 
the Bz component of the IMF and solar wind speed. 
The zonal equatorial electric field component can 
occasionally be seen to reverse when the IMF shifts 
from a constant southerly direction to a northward 
one; the storm is associated with a rapid change in the 
magnetosphere’s convective electric field Chakrabarty 
et al. (2017). A sequence of solar events, including an 
M1.0 class flare and accompanying coronal mass 

ejections (CMEs), set off geomagnetic storms that 
occurred on 3rd and 4 February 2022. Increased air 
density and ionospheric disruptions were caused by 
these storms’ substantial effects on Earth’s atmosphere 
and ionosphere Dang et al. (2022). Thirty-eight 
Starlink satellites were destroyed by storms, under
scoring the necessity for improved knowledge and 
forecasting of space weather. These results are in line 
with other studies on the impacts of geomagnetic 
storms on the magnetosphere and ionosphere of 
Earth Lakhina and Tsurutani (2018).

Space weather prediction is the process of esti
mating the strength of the onset of a geomagnetic 
storm using solar and interplanetary data 
Srivastava (2005). A geomagnetic storm causes sig
nificant modifications to the Earth’s magnetic field 
auroras, and electric currents. These changes can 
be harmful to human life and health and can accel
erate charged particles in the interplanetary (IP) 
space and enhance them Siscoe and Schwenn 
(2006). Space weather is often characterised by 
geomagnetic storms. To accomplish this, a predic
tion technique based on the solar and IP features 
of geo-effective CMEs must be developed. The pri
mary subject in the context of space weather today 
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is the potential forecasting of a geomagnetic storm. 
The truth is that a great deal of research has been 
done to determine the precise relationship between 
solar processes, interplanetary events and geomag
netic activity Zhang et al. (2022) and Li et al. 
(2007). However, several studies concentrated on 
forecasting the disturbance storm time (Dst) 
index Temerin and Li (2002), Gonzalez et al. 
(2004), Pallocchia et al. (2006) which evaluate the 
solar activity-driven dynamic of the symmetric 
portion of the ring current, Sugiura and Chapman 
(1960). Space weather affects electrical power dis
tribution systems, communication networks, satel
lites and terrestrial radars; hence, accurate, fast and 
reliable machine learning methods of forecasting 
are crucial for mitigating the negative effects 
caused by geomagnetic storms Akasofu et al. 
(2021).

Machine learning (ML) has witnessed great poten
tial to forecast the geomagnetic storm. Several authors 
have used solar wind data and input parameters, while 
others have used solar features such as sunspot num
ber and size of coronal hole to reach a good perfor
mance. In the 1980s, attempts to anticipate 
geomagnetic indices by Mayaud (1980) through a 
linear prediction model. The SYM-H index indicates 
the ring current’s asymmetric and longitudinally sym
metric components, and an attempt is made to use 
ANN to create a prediction model for this index 
Bhaskar and Vichare (2019). They used the 
Autoregressive network (NARX) to implement the 
SYM-H index for 92 geomagnetic storms between 
1998 and 2013. The SYM-H index-trained network 
predicts SYM-H very well, and the average correlation 
between observed and predicted SYM-H is strong (R2 

~0.88), meaning that the network models nearly 77% 
of the variability in SYM-H. For this reason, we used 
different models to enhance the correlation 
coefficient.

In this work, we assess the performance of 
machine learning approaches in modelling, specifi
cally Gradient Boosting Regressor (GBR) to predict 
the SYM-H index. Analysis showed the GBR algo
rithm delivered a good performance, attaining a 
strong predictive accuracy of 95%, exceeding alter
native evaluated methods. By leveraging GBR for 
SYM-H index forecasting, the high precision 
demonstrates machine learning, and GBR in parti
cular, as an effective modern approach for model
ling this phenomenon. The successful application 
and predictive capabilities achieved underscore the 
suitability of machine learning for advancing 
insights into SMY-H through data-driven model
ling. The structure of the paper is organised into 
the following sections: Section 2 explains the data 
sets, Section 3 demonstrates the methodology, 
Section 4 presents the results, Section 5 discusses 

our findings, and finally the last section is the 
conclusion.

2. Data sets

2.1. Parameters describing the geomagnetic 
storms

The solar wind data used in the current study to 
characterise the geomagnetic disturbance are solar 
wind velocity (v), proton density (n), proton tempera
ture (T), flow pressure (p), electric field (Ey), magnetic 
field (Bz) and the symmetric disturbance storm time 
index (SYM-H). These data have been obtained from 
the OMNI web data services interface, which is avail
able through this link: (https://omniweb.gsfc.nasa. 
gov.). The data are modified (Level −3) High- 
Resolution OMNI (HRO) data, derived from the con
clusive Wind plasma data, in 1-min resolution Zhang 
et al. (2022). The solar wind can be described as a two- 
component flow with fast, tenuous, quiescent flow 
emanating from coronal holes Riley et al. (2011). In 
this study, we used four days of solar parameter and 
SYM-H index data. These data represent days (1, 2, 3, 
and 4) in February 2022. In this study, we used four 
days solar parameter and SYM-H index data. These 
data represent days (1, 2, 3 and 4) February 2022.

2.2. Ground observatories data

The ground magnetic observatories KAK, BSL, ABK, 
and LER are situated at the following locations: KAK 
station is in Kanoya, Japan, at Latitude 36.232 and 
Longitude 140.186. BSL station is found in Baker 
Lake, Canada, with coordinates Latitude 64.318 and 
Longitude 263.988 Turbitt et al. (2003). ABK station is 
situated in Abisko, Sweden, at Latitude 68.358 and 
Longitude 18.823 (Mandrikova and Rodomanskay  
2021). LER station located in Lerwick, United 
Kingdom, with coordinates Latitude 60.138 and 
Longitude 358.817 Turbitt et al. (2003). Data from 
these observatories have been sourced from the 
British Geological Survey (BGS) website (https://geo 
mag.bgs.ac.uk/.) Turbitt et al. (2003). The selected data 
used in our analysis were downloaded from this site 
and are monitored through these stations.

2.3. Misallat observatory in Egypt data

We used geomagnetic raw data obtained from Misallat 
observatory (MLT) operated by Geomagnetism 
Laboratory, the National Research Institute of 
Astronomy and Geophysics (NRIAG), Egypt El-Eraki 
et al. (2014); Ghamry et al. (2016). MLT observatory 
was established in 1960 as a substitute for the geomag
netic observations that had been running since 1903 at 
the main quartier of NRIAG at Helwan. MLT is 
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located at 29° 30′ 52″ N and 30° 53′ 22″ E. The 
observatory at Misallat has a Magson digital fluxgate 
magnetometer, an overhauser magnetometer for total 
field measurements, and a single-axis DI fluxgate sen
sor mounted on a nonmagnetic theodolite for absolute 
measurements.

3. Methodology

GBR is a powerful machine learning algorithm that 
combines multiple weak regression models to create a 
highly accurate predictive model Konstantinov and 
Utkin (2021). GBR works by iteratively training a 
sequence of simple regression models, each of which 
attempts to minimise the residual error from the pre
vious model. This algorithm is highly robust to noisy 
data and can handle complex interactions between 
features without the need for extensive data prepro
cessing or parameter tuning Guelman (2012). GBR has 
been successfully applied to a variety of regression 
problems, including predicting surface area, pore 
volume, and yield in biomass-derived activated carbon 
production, with R-squared values ranging from 0.76 
to 0.91 Zou et al. (2024).

Researchers have also explored extensions of GBR, 
such as wide boosting, which inserts a matrix multi
plication between the output of the GBR model and 
the loss function, allowing for increased model com
plexity and improved predictive performance Horrell 
(2020). However, GBR models can be computationally 
intensive, especially for large datasets, and may require 
careful tuning of hyperparameters to achieve optimal 
performance Zheng et al. (2017). The explainability of 
GBR predictions, especially with earth observation 
data, is still an open issue that requires more focus 
by researchers Okolie et al. (2023). In the domains of 
regression and classification tasks, gradient boosting 
surpasses other methods like random forests or sup
port vector machines in both accuracy and efficiency. 
Its capability to amalgamate multiple weak learners 
into a potent ensemble of strong learners makes it 
particularly suitable for large-scale applications 
Bentéjac et al. (2021). The statistical RMSE, MAE 
and R2 values used in the study are calculated as 
shown in Eqs. 1, 2, 3 and 4, respectively: 

Where:

● RMSE is the Root Mean Squared Error.
● MAE is the Mean Absolute Error.
● R2 is the correlation coefficient.

● n is the total number of samples in the dataset.
● yiis the actual (true) value of the target variable 

for the i-th sample.
● byi is the predicted value of the target variable for 

the i-th sample.
● SSR is the sum of squared residuals, which is a 

measure of the error between the predicted values 
and the actual values.

● SST is the total sum of squares, which is a mea
sure of the total variation in the data.

The R2 value can also be calculated using the following 
formula: 

In both cases, the R2 value is a number between 0 
and 1, where 1 indicates a perfect fit and 0 indicates no 
fit. A higher R2 value indicates a better fit.

4. Results

4.1. Geomagnetic storms analysis

The key indices for geomagnetic storm analysis are the 
Dst and SYM-H indices, which measure the variation of 
the north-south component of the Earth’s magnetic 
field Katus and Liemohn (2013). We analysed the 
SYM-H index for double geomagnetic storms on 3 
and 4 February 2022. The locations of ground magnetic 
observatories are shown in (Figure 1), and we used 
(KAK, MLT, BSL, ABK, LER) stations to analyse these 
events. Figure 2 illustrates the variation of the solar 
parameters of the double storm on 3rd and 4 February 
2022. Figure 2(a) shows the solar wind dynamic pres
sure; it was an increase in the dynamic pressure of about 
18 and 14 nPa on 3rd and 4th February, respectively. 
Figure 2(b) explains the solar wind velocity. Also, the 
velocity increased to around − 420 km/s on day 3 and − 
450 km/s on day 4 in February. We observed a rise in 
solar wind density of about (35, 20 cm-3), which was 
observed on 3rd and 4th of February, respectively, in 
(Figure 2(c)). The interplanetary magnetic field magni
tude (IMF) increased, ranging from 13 to 18 (nT) on 4th 

and 3rd February, respectively (Figure 2(d)). The range 
of change in magnetic activity from 62 to 66 nT is 
shown in SYM-H in (Figure 2(e)).

Ground magnetic observatories during geomag
netic storms are shown in (Figure 3). Figure 3a 
shows the (LER) station located at 60.1380N, 
1.1830W for the British Geological Survey (BGS), 
United Kingdom. Figure 3(b) is the MLT station in 
Egypt, and it is located at 29°30’51“N 30°53’22”E. The 
(BSL) station is located at 30.3500 N, 89.6400 W for 
the United States Geological Survey (USGS), United 
States of America in (Figure 3c). The fourth station is 
the (ABK); it is located at 68.3580 N, 18.8230 E for the 
Geological Survey of Sweden (SGU), Sweden. The last 
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station is (KAK), located at 36.2320 N, 140.1860 E and 
belong to the Japan Meteorological Agency (JMA), 
Japan.

4.2. Machine learning analysis using the GBR 
algorithm

The input variables for the GBR model should 
include solar wind parameters such as solar (v), 
(n), (T), (p), (Ey), (Bz) as these have been identi
fied as having the greatest impact on the output 
variable, the geomagnetic index (SYM-H). Table 1 
presents a descriptive statistical overview of the key 
input and output variables in the SYM-H index 
data used to train and test the GBR model. We 
used the machine learning model that was devel
oped and evaluated using a total of 4369 data 

points in Table 1. Table 2 presents the performance 
metrics of the GBR model on both the training 
data and testing data for predicting the SYM-H 
index. The GBR model achieves low MAE and 
RMSE scores of 3.79 and 5.20, respectively, indicat
ing its strong generalizability. The model is evi
denced by the high R2 values of 0.957 for testing 
data and 0.950 for training data, demonstrating 
excellent predictive performance.

Figure 4 shows the residual values calculated from 
the actual observed SYM-H index in the blue column, 
the predicted SYM-H index values in the red column, 
and the error values in the green column. We used the 
GBR model to estimate the residuals of the actual and 
predicted SYM-H index. The residuals of the actual 
and predicted SYM-H index using the GBR model, 

Figure 1. Locations of ground magnetic observatories.

Figure 2. Solar wind parameters during the geomagnetic storms on 3rd and 4th February 2022.
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about 2.77, are calculated through the following 
equation: 

The “Error” column quantifies the difference between the 
actual and predicted SYM-H index values. Figure 5a dis
plays the variables Bz, V, n, T, P, Ey and SYM-H, which 
are indicated on both the horizontal and vertical axes. 
The correlation coefficient between the variables in each 
row and column is represented by a cell in the matrix. 
Figure 5b illustrates the significance of every solar wind 
parameter and SMY-H index to the GBR model. The data 
set many characteristics shown on the x-axis. Each para
meter relevance score is shown on the y-axis, where 
higher scores denote more significance for the 

Figure 3. Ground magnetic observatories during the geomagnetic storms on 3rd and 4th February 2022.

Table 1. Descriptive statistics and data analysis of solar wind parameters and SMY-H index.
IMF VX N npa SMY-H

Count 4369.00000 4369.000000 4369.000000 4369.000000 4369.000000
mean 7.97412 492.083566 6.292889 3.036576 23.427329
std 3.44962 49.077159 3.656215 1.888788 21.765353
min 0.49000 608.600000 0.810000 0.400000 79.000000
25% 5.64000 530.700000 3.790000 1.860000 40.000000
50% 7.46000 490.000000 4.910000 2.540000 20.000000
75% 9.79000 457.500000 8.220000 3.710000 3.000000
Max 19.85000 373.200000 35.120000 17.500000 9.000000

Table 2. Performance of our machine learning model (GBR) for 
training and testing data for predicting SYM-H index.

Metric Training Data Testing Data

MAE 3.79 3.84
RMSE 5.20 5.03
R2 0.950 0.957

Figure 4. Residuals of actual and predicted SMY-H index using the GBR model.
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correctness of the model. The range of scores is from 0 to 
1. Velocity (v) appears to be the most crucial component, 
with a correlation of 0.63; so the velocity has the most 
impact on the target variable due to its dominating score.

Figure 6 displays the low values of the GBR 
model’s error. The histogram shows the frequency 
on the y-axis and residuals on the x-axis. The 
smooth curve represents the probability density 

estimate of the residuals. The range of the distribu
tion of residuals ranged from −16.75 to + 24.60. 
Observed and predicted values of the SYM-H 
index for the GBR model are shown in (Figure 
7). The blue line represents predicted values 
plotted against observed values for the SYM-H 
index. The red line indicates where predicted 
values exactly equal observed values. The closer 

Figure 5. (a) Correlation heatmap of dataset variables used on predicting SYM-H index, (b) Typical features importances dataset 
variables used on predicting SYM-H index.

Figure 6. Distribution of error values between observed and predicted values of SYM-H index using GBR algorithm.

Figure 7. Observed and predicted values of SYM-H index using the GBR algorithm.
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the blue points are to this line, the better the GBR 
model’s predictions. The blue points are tightly 
clustered along the red line, indicating that the 
predicted values closely match the observed values.

Figure 8 shows the training loss of the model 
exhibits a consistent lower trend with increasing 
training, suggesting that the model is getting better 
at fitting the training data. The loss of the GBR 
model against iterations for training and against 
iterations for the testing data are shown left and 
right, respectively, in (Figure 8). The GBR training 
loss shows a steady downward trend as training 
progresses and an alteration of about 180, indicating 
that the model is continuously improving to fit the 
training data. Simultaneously, the test loss also 
decreases over time, demonstrating the model’s abil
ity to generalise its learning to new, unfamiliar data. 
The simultaneous reductions in training and test loss 
highlight the model’s capacity to learn underlying 
patterns from the training data that transfer well to 
making accurate predictions on new data. The pre
dicted values closely match the actual values, 
demonstrating the model’s effectiveness in accurately 
forecasting the magnetic field for both sets of train
ing and testing datasets in (Figure 9).

5. Discussion

GBR has emerged as a powerful tool for predicting 
geomagnetic storms using machine learning tech
niques to increase prediction accuracy. The GBR 
model is trained using a combination of solar wind 
patterns, interplanetary magnetic field (IMF) data, 
and SYM-H index. In this paper, we used the GBR 
algorithm to predict the SYM-H index. This model 
demonstrates excellent predictive performance. 
Recent research highlights how the GBR was suc
cessfully used to predict the SYM-H index, which 
is important for assessing geomagnetic storm activ
ity. The GBR model is trained using a combination 
of solar wind patterns, interplanetary magnetic 
field (IMF) data, and SYM-H index. This approach 
allows for capturing the intricate dynamics that 
lead to geomagnetic storms Iong et al. (2022), 
Sierra-Porta et al. (2024). Studies have shown that 
GBR outperforms traditional forecasting methods 
and some neural network methods in predicting 
accuracy. For example, Iong et al. (2022) showed 
that the GBR provided a statistically significant 
improvement in root square error compared to 
the existing model. GBR has shown superior 

Figure 8. Training and test loss over alterations for GBR model.

Figure 9. Actual and predicted values for training and test data of SYM-H index using (GBR) algorithm.
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predictive accuracy compared to other machine 
learning models such as random forests and tradi
tional statistical methods. It accurately identifies 
important geomagnetic activity, such as solar 
wind speed and magnitude, that are important in 
storm prediction Balaji and Ranganathan (2024), 
Sierra-Porta et al. (2024). Through previous stu
dies, in this study we used the GBR model because 
it has high accuracy for forecasting geomagnetic 
storms.

Several scientists have been using ML models to 
forecast geomagnetic storms using data from the 
solar wind (SW) and geomagnetic indexes. 
Barkhatova et al. (2008) used artificial neural networks 
(ANN) to investigate two indexes of SYM-AU and 
ASY-AL. They showed that the correlation coefficient 
(>50%) between the real and retrieved sequences is 
observed. Luo et al. (2018) assessed the performance of 
GPS under different geomagnetic storm conditions 
during solar cycle 24 using (ANN). According to sta
tistical findings, the increased correlation coefficients 
under moderate, powerful, and superstorm circum
stances are 13.04%, 56.52%, and 69.57%, respectively. 
Koklu (2022) estimated geomagnetic indices, includ
ing Dst and Kp, using an ANN model. With an accu
racy of over 90%, the discussion is reliable in 
estimating geomagnetic indices. Basciftci (2023) inves
tigated the four moderate geomagnetic storms that 
occurred in 2015 using ANN to predict (Dst, Ap, 
and AE). Through their result, the accuracy for ANN 
is 89%. Budiman et al. (2023) used Random Forest 
regression to forecast the Kp index, and the efficiency 
in this model is 85.55%.

Overall, our results matching previous studies 
using the metrics validate the strong performance of 
the GBR model by accurately estimating the SYM-H 
index. Which is important for assessing geomagnetic 
storm intensity in Table 2, the training data used to 
build the model, the GBR model achieves low MAE 
and RMSE scores of 3.79 and 5.20, respectively. This 
suggests the model fits the training data very well. The 
testing data provides an out-of-sample evaluation of 
model performance. The GBR model achieves similar 
MAE and RMSE values on the testing data, indicating 
its strong generalisability. The model demonstrates 
outstanding predictive performance as it explains 
95–96% of the variation in magnetic field, as evi
denced by the high (R2) values of 0.957 for testing 
data and 0.950 for training data, demonstrating excel
lent predictive performance. GBR offers significant 
advantages for forecasting geomagnetic storms; it is 
essential to remain vigilant about its limitations. By 
implementing strategies to mitigate these challenges 
and conducting a thorough self-assessment through
out the modelling process, we can enhance the relia
bility and effectiveness of our predictions in this 
critical area of research.

6. Conclusion

We utilise machine learning algorithms to investigate 
the precursor that follows halo coronal mass ejection 
(CME), eventually leading to moderate geomagnetic 
storms on the 3rd and 4th of February 2022. The 
methodology involved developing and testing a 
machine learning model on collected data, implemen
ted with GBR technique. This study provides evidence 
for the suitability of the GBR regressor for forecasting 
the SYM-H index. According to the study, using the 
GBR regressor model gives performance up to 95 %. 
This load to the GBR algorithm is one of the best 
machine learning algorithms, and it gives high accu
racy for our problem and showed outstanding capabil
ities, producing high levels of precision and accuracy 
across a range of error measures. This work is a pre
liminary study that should be extended by extra stu
dies that may discuss the width of machine learning to 
the prediction of geomagnetic storms.
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