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Abstract The behaviour of the earth’s crust due to topographic loads can be derived by either

inverse or direct approach. As for the inverse approach, it is postulated that the density anomaly

is proportional to the earth’s radius vector so that it is linearly related to topography by a convo-

lution of the topography and an isotropic kernel function. Accordingly, one can prove that the

attraction of the compensating masses is also a convolution of the topography and an isotropic iso-

static response function. Such an isostatic response function can be determined by deconvolution.

This paper gives the derivation of such a deconvolution by means of spherical harmonics. A prac-

tical determination of the isotropic isostatic response function needs the harmonic analysis of both

the topography and the attraction of the compensating masses. Applying the principle of inverse

isostasy, by which we aim to achieve zero isostatic anomalies, then the attraction of the compensat-

ing masses equals the Bouguer anomalies with an opposite sign. The harmonic analysis of the Bou-

guer anomalies is thus a combination of the harmonic analysis of the topographic potential and the

already existing global reference models. As for the direct approach, consider that the earth’s crust

is an infinite thin plate subject to topographic loads. The solution of such a bent plate represents the

displacement of the earth’s crust due to topographic loads. The paper illustrates that the exact solu-

tion of the bent plate is given by the Kelvin function kei x. A practical application has been carried

out for both approaches using EGM96 and GPM98CR geopotential earth models as well as

TUG87 and TBASE digital height models. The results show that the estimated isotropic isostatic

response functions derived by the inverse approach behave similarly as that given by direct

approach represented by the Kelvin function kei x.
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1. Introduction

The estimation of the behaviour of the earth’s crust due to the
topographic loads is a traditional subject in geodynamics and

has been investigated by many scholars. Several isostatic mod-
els have been postulated in the past.

Pratt–Hayford isostatic model assumes constant level of

compensation and the topography is being compensated by
ational Research Institute of Astronomy and Geophysics.
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variable density contrast in a local sense. Airy–Heiskanen iso-
static model assumes that the topography is floating on a den-
ser substratum (the mantle) so that the higher it is, the deeper it

sinks. Thus, here the level of compensation is variable, while
the density anomaly is constant. Again, Airy–Heiskanen mod-
el assumes free mobility of the topographic elements and their

compensating elements, i.e., it works in a local sense (Heiska-
nen and Moritz, 1967, pp. 133–137).

Veneing Meinesz has introduced regional, instead of local,

floating isostatic model (Vening Meinesz, 1940). In the frame-
work of the floating regional isostatic hypothesis, Abd-Elm-
otaal (1993) has given the exact bending curve of the earth’s
crust subject to the topographic loads.

All the models introduced above may belong to the so-
called direct models. Another way to estimate the behaviour
of the earth’s crust due to the topographic loads, which may

be called inverse models, is given by a postulation of the rela-
tion of the density anomaly and the topography.

We start with the assumption that the density anomaly Dq
is linearly related to the topography h by a convolution of the
topography and an isotropic kernel function K, i.e.,

Dqðr0; h0; k0Þ ¼
ZZ
r

hðh00; k00ÞKðr0;w0Þdr; ð1Þ

or symbolically

Dqðr0; h0; k0Þ ¼ hðh00; k00Þ � Kðr0;w0Þ; ð2Þ

where * stands for the spatial convolution. This assumption
was given first by Dorman and Lewis (1970). Accordingly,
one can prove that the attraction of the compensating masses

is also a convolution of the topography and an isotropic iso-
static response function. Such an isostatic response function
can be determined by deconvolution.

This paper gives the derivation of the isostatic response
function in terms of spherical harmonics by a deconvolution
of the vertical derivative of the isostatic potential. A practical

computation of the isotropic isostatic response function has
been carried out using EGM96 model (complete to degree
and order 360) and GPM98CR (complete to degree and order
540) representing the geopotential earth model. TUG87

(300 � 300 resolution) and TBASE (200 � 200 and300 � 300 reso-
lutions) digital height models have been used for computing
the harmonic coefficients of the topography and of the topo-

graphic potential. A broad comparison of the isostatic re-
sponse functions estimated within this investigation has been
made. These estimated isostatic response functions are also

compared with the exact solution of the earth’s crust bent by
the topographic loads expressed by the Kelvin function kei x.
It should be noted that related numerical results may be found,
e.g., in Lewis and Dorman (1970), Bechtel et al. (1987), and

Hein et al. (1989).
2. Isostatic response function in terms of spherical harmonics

As stated earlier, postulating that the density anomaly Dq is gi-
ven by a convolution of the topography and an isotropic
kernel function, one can derive that the attraction of the com-

pensating masses AC is also a convolution of the topography h
and an isotropic isostatic response function FðwÞ (Dorman and
Lewis, 1970)
ACðR; h; kÞ ¼
ZZ
r

hðh0; k0ÞFðwÞdr; ð3Þ

w denotes the spherical distance between the computational
point ðh; kÞ and the running point ðh0; k0Þ, given by

cosw ¼ cos h cos h0 þ sin h sin h0 cosðk0 � kÞ: ð4Þ

where h is the co-latitude and k denotes the longitude.
Given the attraction of the compensating masses AC and

the topographic height h, the isostatic response function F

can be determined by deconvolution of (3). We confine our-
selves to the global problem, which can be solved by means
of spherical harmonics.

Let us expand the three components of (3)

ACðR; h; kÞ ¼
X1
n¼0

Xn
m¼�n

AnmYnmðh; kÞ; ð5Þ

hðh; kÞ ¼
X1
n¼0

Xn
m¼�n

HnmYnmðh; kÞ; ð6Þ

FðwÞ ¼
X1
n¼0

FnPnðcoswÞ; ð7Þ

where PnðcoswÞ stands for the standard Legendre polynomial
and the base functions Ynm are given by Moritz (1990, p. 195)

Ynmðh; kÞ ¼ Pnmðcos hÞ
cosmk;m ¼ 0; 1; 2; . . . ; n;

sinmk;m ¼ �1;�2; . . . ;�n ;

�
ð8Þ

where Pnmðcos hÞ are the standard Legendre functions. Since F
depends only on w, its expansion is purely zonal, cf. (7).

Substituting F from (7) into (3) gives

ACðR; h; kÞ ¼
X1
n¼0

Fn

ZZ
r

hðh0; k0ÞPnðcoswÞdr: ð9Þ

Now by using the well-known integral formula (Heiskanen

and Moritz, 1967, Eq. 1–71), one can write

ACðR; h; kÞ ¼ 4p
X1
n¼0

Fn

2nþ 1
Hnðh; kÞ: ð10Þ

We express the Laplace harmonic Hnðh; kÞ of the topography h
in terms of the base functions Ynm

Hnðh; kÞ ¼
Xn
m¼�n

HnmYnmðh; kÞ: ð11Þ

Thus AC is given by inserting (11) into (10)

ACðR; h; kÞ ¼ 4p
X1
n¼0

Xn
m¼�n

Fn

2nþ 1
HnmYnmðh; kÞ: ð12Þ

Comparing (5) with (12) gives immediately

Anm ¼
4p

2nþ 1
FnHnm: ð13Þ

Eq. (13) is the so-called spherical convolution theorem given

by Moritz (1990, p. 251). Eq. (13) can be written for Fn as

Fn ¼
2nþ 1

4p
Anm

Hnm

; ð14Þ

which is independent of the order m. This condition should be

satisfied by the topography h and the attraction of the compen-
sating masses AC if the assumption of isotropy is justified. Fi-
nally, the isostatic response function is given by (7) with (14).
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3. Computational aspects

Eq. (14) computes Fn as a ratio of the conventional harmonic
coefficients of the attraction of the compensating masses Anm

and of the topography Hnm. The conventional harmonic coef-
ficients are related to the fully normalized ones by, e.g.,
(Heiskanen and Moritz, 1967, p. 32)

An0 ¼
An0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p ;

Anm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2ð2nþ 1Þ
ðnþmÞ!
ðn�mÞ!

s
Anm ðm–0Þ:

ð15Þ

Replacing the conventional harmonic coefficients by the fully
normalized ones, the constant factors in the nominator and
dominator of (14) will cancel, and Fn will be given by

Fn ¼
2nþ 1

4p
Anm

Hnm

; ð16Þ

where Anm and Hnm are the fully normalized harmonic coeffi-
cients of the attraction of the topographic masses and of the
topography, respectively.

Practical computation of Fn by (16) may face a problem of
imperfect isotropy. This leads to loss of power of Fn, especially
for higher degrees n, if one computes Fn by, e.g.,

Fn ¼
2nþ 1

4p
1

2nþ 1

Xn
m¼�n

Anm

Hnm

 !
¼ 1

4p

Xn
m¼�n

Anm

Hnm

ð17Þ

The expression in between the brackets represents the average

of the ratio Anm=Hnm; hence we have 2nþ 1 ratios by degree.
As it is already known in most practical applications in phys-
ical geodesy (e.g., empirical covariance function), perfect isot-

ropy can hardly be occurred in practice, especially for the short
wavelength spectrum. For the long wavelength spectrum, al-
most perfect isotropy can be achieved in practice. Hence, iso-

tropic kernels (functions) are commonly postulated in
physical geodesy with careful computational techniques to re-
duce the effect of imperfect isotropy. Accordingly, using the

mean ratio (17) may yield to loss of power of Fn, especially
for higher degrees. Alternatively, Fn may be computed by

Fn ¼
2nþ 1

4p
An

Hn

; ð18Þ

where An and Hn are given by

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
m¼�n

A2
nm

s
; ð19Þ

Hn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
m¼�n

H2
nm

s
: ð20Þ

The definition of An and Hn shows clearly the advantage of

using (18) to save the power of Fn. Here there is only one ratio

An=Hn per degree. Practical comparison between (17) and (18)
will be given in Section 8.

The summation along n in (7) is infinite. Examining (18)
shows that using a certain practical upper limit Nmax, repre-
senting infinity, will change the values of the isostatic response

function. As the ratio An=Hn is bounded (cf. Fig. 4), the main

part in the expression (18) is the factor 2nþ 1, which is nothing
else but an equation of a straight line. Accordingly, for the
isostatic response function, the higher the upper limit, the lar-
ger are the values of the isostatic response function. Hence, no
direct comparison of isostatic response functions could be

made. To solve this, we define the normalized isostatic response

function FðwÞ as

FðwÞ ¼ FðwÞ
Fð0Þ ; ð21Þ

where Fð0Þ stands for the value of the isostatic response func-
tion at the origin (w ¼ 0). Thus, for the normalized isostatic re-
sponse function, the maximum value at the origin will always

be unity.

4. Inverse isostasy

A practical determination of the isotropic isostatic response
function needs the harmonic analysis of both the topography

Hnm and the attraction of the compensating masses Anm,
cf. (16). Creating compensating masses by means of an iso-

static hypothesis already implies an assumption of the earth’s
isostatic response. Instead, one may wish to estimate a more
realistic isostatic response of the earth without postulating

an isostatic hypothesis. This may be achieved by employing
the principle of inverse isostasy, by which we aim to have zero
isostatic anomalies DgI, i.e.,

DgI � 0: ð22Þ

The reader who may be interested in more details about in-
verse problems in isostasy is referred to, e.g., (Moritz, 1990,
Sec. 8.3). Eq. (22) can alternatively be written in the form

AC ¼ �DgB; ð23Þ

where AC stands for the attraction of the compensating
masses, as before, and DgB stands for the Bouguer anomalies.
Thus, the Bouguer anomalies will be used instead of the attrac-

tion of the compensating masses.

5. Harmonic analysis of compensating masses and topography

The Bouguer anomaly DgB is defined by

DgB ¼ DgF � AT; ð24Þ

where DgF stands for the free-air anomaly and AT refers to the

attraction of the topographic masses. Using (23), the attraction
of the compensating masses may be written as

AC ¼ AT � DgF: ð25Þ

Accordingly, applying simple harmonic analysis properties,

the fully normalized harmonic coefficients (in the usual sense
of physical geodesy) of the potential of the compensating
masses Cnm can be defined as

Cnm ¼ �tnm � Tnm; ð26Þ

where �tnm are the fully normalized harmonic coefficients of the

potential of the topographic masses and Tnm are the fully nor-

malized harmonic coefficients of the free-air disturbing poten-

tial. Tnm are provided by the global geopotential earth models

(e.g., EGM96). The harmonic analysis of the topographic po-
tential �tnm will be given in the next section. Finally, the fully
normalized harmonic coefficients of the attraction of the com-

pensating masses Anm (in gravity anomaly unites) is related to
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the (unitless) fully normalized harmonic coefficients of the po-

tential of the compensating masses Cnm by (Heiskanen and
Moritz, 1967, p. 89)

Anm ¼
GM

R2
ðn� 1ÞCnm; ð27Þ

where GM is the geocentric gravitational constant and R is the

mean earth’s radius.
Expand the topography h in terms of fully normalized har-

monic coefficients Hnm

hðh; kÞ ¼
X1
n¼0

Xn
m¼�n

HnmYnmðh; kÞ; ð28Þ

where the fully normalized base functions Ynm are given by
(analogous to (8))

Ynmðh; kÞ ¼ Pnmðcos hÞ
cosmk;m ¼ 0; 1; 2; . . . ; n;

sinmk;m ¼ �1;�2; . . . ;�n ;

�
ð29Þ

and Pnmðcos hÞ are the fully normalized Legendre functions.
The fully normalized harmonic coefficients Hnm are orthogo-

nal, and given by (ibid., p. 31)

Hnm ¼
1

4p

ZZ
r

hðh; kÞYnmðh; kÞdr: ð30Þ

The practical determination of the fully normalized har-

monic coefficients Hnm is carried out using the HRCOFITR
program written by Abd-Elmotaal (2004) based on HARMIN
and SSYNTH programs, written originally by Colombo
(1981), in an iterative scheme to allow harmonic analysis on

the ellipsoid and to achieve better accuracy.

6. Harmonic analysis of the topographic potential

The topographic potential TT can be easily defined as the po-
tential of all topographic masses outside the geoid and ocean
water inside the geoid. The topographic potential TT can be

written as:
Fig. 1 Potential of the topographic masses.
TTðPÞ ¼ G

ZZZ
v

qQ

‘PQ
dvQ; ð31Þ

where G is Newton’s gravitational constant, qQ denotes the
density at Q; ‘PQ is the spatial distance between P and Q and

dvQ is the volume element at Q.
It is known that TT is harmonic outside the earth’s surface

and its spherical harmonic series is convergent outside a sphere

completely enclosing the earth (Heiskanen and Moritz, 1967,
p. 60). Outside that sphere, the convergent series representa-
tion of the reciprocal distance can be used (ibid., p. 33)

1

‘PQ
¼
X1
n¼0

rnQ

rnþ1P

PnðcoswPQÞ; ð32Þ

where r is the modulus of the radius vector, PnðcoswÞ is the
conventional Legendre polynomial of degree n and wPQ is
the spherical distance between P and Q.

The Legendre polynomial may be expressed as (ibid., p. 33)

PnðcoswPQÞ ¼
1

2nþ 1

Xn
m¼�n

RnmðPÞRnmðQÞ: ð33Þ

with the fully normalized spherical harmonics

RnmðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21�dm0 ð2nþ 1Þ ðn�mÞ!

ðnþmÞ!

s
Pnmðcos hPÞ

cos mkP for m 6 0

sin mkP for m > 0

�
ð34Þ

with

dij ¼
1 if j ¼ i

0 if j–i

�
; ð35Þ

where h is the polar distance, k is the geodetic longitude, dij is
the Kronecker symbol and Pnmðcos hÞ is the Legendre function
of degree n and order m. Thus the topographic potential can be
represented by

TTðPÞ ¼ G
X1
n¼0

1

ð2nþ 1Þrnþ1P

Xn
m¼�n

RnmðPÞ
ZZZ
v

qQr
n
QRnmðQÞdvQ

2
4

3
5 ð36Þ

with

dv ¼ r2drdr; ð37Þ

where dr is the spherical surface element.
To calculate the volume integral inside the brackets of (36),

we will confine ourselves to the spherical approximation (the

geoid is represented by a sphere of radius R (Sünkel, 1985);
cf. Fig. 1). Then its contribution due to the topographic masses
outside the geoid and ocean water inside the geoid, see Fig. 1,
isZZZ
v

¼
ZZ

r

Z Rþh

r¼R
qQr

nþ2
Q drQRnmðQÞdrQ; ð38Þ

where R is the radius of the mean earth’s sphere and h is the

topographic height (+) or ocean bottom depth (�).
The integration of (38) with respect to r is straightforward

and is expressed as (Sünkel, 1985, p. 5)ZZZ
v

¼ Rnþ3

nþ 3

ZZ
r

qQ 1þ hQ
R

� �nþ3

� 1

" #
RnmðQÞdrQ: ð39Þ

Hence, the harmonic coefficients of the topographic potential
�tnm and the harmonic series expansion of the topographic
potential can be expressed, by inserting (39) into (36), as
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TTðPÞ ¼
GM

rP

X1
n¼0

R

rP

� �nXn
m¼�n

�tnmRnmðPÞ; ð40Þ

where

�tnm ¼
R3

Mð2nþ 1Þðnþ 3Þ

ZZ
r

qQ 1þ hQ
R

� �nþ3

� 1

" #
RnmðQÞdrQ;

ð41Þ

where M denotes the mass of the earth, given by

M¼: 4pR
3

3
qM; ð42Þ

where qM denotes the mean earth’s density

qM¼
:
5:517g=cm3:

For the practical determination of the harmonic coefficients

of the topographic potential �tnm, (41) may be written as

�tnm¼
3D/Dk

4pqMð2nþ1Þðnþ3Þ
X/

i

Xk

j

qij 1þhij
R

� �nþ3

�1
" #

cosmkj

sinmkj

� �
�

�PnmðcoshiÞcos/i; ð43Þ

where
P

denotes the summation along / and k;D/ and Dk
are the grid sizes of the used digital height model in the latitude

and the longitude directions, respectively, and q is given by

q ¼ q� for h P 0;

q ¼ q� � qw for h < 0;
ð44Þ

where q� is the constant density of the topography and qw is
the density of the ocean’s water.

7. Exact solution of the earth’s crust bent by topographic load

As mentioned earlier, the behaviour of the earth’s crust can

also be estimated by the so-called direct approach. The direct
approach deals generally with the isostatic models. Here we are
going to review the most realistic regional isostatic model in
the framework of the floating plate hypothesis.

Let us assume that the earth’s crust (of density q�) is repre-
sented by an infinite thin plate floating on a denser substratum
(the mantle of density q1) bent by the topographic load, Fig. 2.

To get a horizontal upper surface, the dotted hollow area
appearing in Fig. 2 should be filled. This represents the so-
called indirect effect. The equation of equilibrium for that

floating bent plate (taking the indirect effect into account) is
Fig. 2 Bending curve of the earth’s crust due to topographic

loads.
then given by Abd-Elmotaal (1993, pp. 121–122), Turcotte
and Schubert (1982)

DD2z ¼ P� gðq1 � q�Þz; ð45Þ

where D is the cylindrical rigidity of the plate, z is the down-
ward displacement, g is the gravity and D denotes the two
dimensional Laplace operator defined as

D � @2

@x2
þ @2

@y2
: ð46Þ

Let us consider a point load of a unit mass to be concen-
trated at the origin O. Then, outside the origin O;P ¼ 0. So

that (45) will be reduced to

DD2z ¼ �g q1 � q�ð Þz; ð47Þ

or we can write it in the form

D2zþ l�4z ¼ 0 ð48Þ

with

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

g q1 � q�ð Þ
4

s
: ð49Þ

Eq. (49) gives the same expression for the so-called degree of
regionality l as given by Vening Meinesz (1940, p. 5).

It can be proved that the Kelvin Function kei x gives an ex-
act solution of (48) (Abd-Elmotaal, 1993, pp. 172–173). Hence,
in the sequel, the Kelvin function kei x will be called the exact

solution of the earth’s bending curve.
It should be noted that an alternative solution for the

spherical earth can be found in Brotchie and Silvester (1969).

8. Computational results

Two digital height models have been used in this investigation.

They are TUG87 (Wieser, 1987) of 300 � 300 resolution and
TBASE (Row and Hastings, 1995) of 200 � 200 and 300 � 300

resolutions. EGM96 model (Lemoine et al., 1998), complete

to degree and order 360, and GPM98CR model (Wenzel,
1998), complete to degree and order 540, have been used rep-
resenting the geopotential earth model.
Fig. 3 Fn computed by mean harmonic ratio (17) and degree

standard deviation ratio (18) using TUG87 DHM and EGM96

geopotential earth model.



Fig. 5 Normalized isostatic response functions compared to

Kelvin function kei x.
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Fig. 3 shows a comparison of computing Fn by (17) and (18)
using TUG87 digital height model and EGM96 geopotential
earth model. It shows that for the lower degrees (till around

n ¼ 40) both curves are nearly coincident. This reveals the per-
fect isotropy for long wavelength spectrum (independency of
the used computational formula). For higher degrees, how-

ever, Eq. (18) saves the power of Fn with less variations be-
tween degree-to-degree values. Please refer to the appropriate
discussion at Section 3.

Fig. 4 shows Fn computed by (18) using TBASE DHM
(300 � 300 resolution for Nmax ¼ 360 and 200 � 200 resolution
for Nmax ¼ 540) and GPM98CR geopotential earth model.
The behaviour of Fn shows, more or less, a linear function,

which follows directly the definition of Fn (note the factor
ð2nþ 1Þ appearing in (16) which is an equation of a straight
line). Fig. 4 shows clearly that using a higher value for Nmax,

representing infinity, will change the values of the isostatic re-
sponse function F. Hence, no direct comparison of isostatic re-
sponse functions could be made. To solve this, we introduced

the definition of the normalized isostatic response function
FðwÞ (cf. (21)).

Fig. 5 shows the normalized isostatic response functions

compared to the Kelvin function kei x. Two normalized iso-
static response functions are considered here. The first uses
EGM96 geopotential earth model and TUG87 DHM with
Nmax ¼ 360. The second uses GPM98CR geopotential earth

model and TBASE DHM (200 � 200) with Nmax ¼ 540. For
the Kelvin function kei x, a value of the degree of regionality
l of 20 km has been chosen. The degree of regionality l is a

function of the changeable physical parameters of the earth’s
crust (cf. (49)). Hence, an exact estimation of l is obviously
hard, and usually one tries to reasonably assume it.

Fig. 5 shows that the normalized isostatic response func-
tions and the Kelvin function kei x give nearly the same values.
For the Kelvin function kei x, the degree of regionality l may

play a role of a fitting parameter. Fig. 5 shows that the isostatic
behaviour of the earth’s crust computed by direct isostasy
using the most realistic isostatic model (expressed by the exact
solution of the earth’s crust subject to the topographic loads,
Fig. 4 Fn computed by (18) using TBASE DHM (300 � 300

resolution for Nmax ¼ 360 and 200 � 200 resolution for

Nmax ¼ 540) and GPM98CR geopotential earth model.
given by the Kelvin function kei x) matches the isostatic

behaviour of the earth’s crust derived by inverse isostasy.
It should be noted that using GPM98CR geopotential

earth model and TBASE DHM (300 � 300 resolution) with

Nmax ¼ 360 gives a normalized isostatic response function
practically coincident with that using EGM96 geopotential
earth model and TUG87 DHM with Nmax ¼ 360. This shows

the insignificant effect of the used digital height and the geopo-
tential earth models.

9. Conclusion

This paper gives the derivation of the isostatic response func-
tion in terms of spherical harmonics by a deconvolution of

the vertical derivative of the isostatic potential. A practical
determination of the isotropic isostatic response function
needs the harmonic analysis of both the topography and the
attraction of the compensating masses. One may try to esti-

mate a reasonable isostatic behaviour of the earth’s crust with-
out postulating an isostatic hypothesis. This has been carried
out by employing the principle of inverse isostasy, by which

one tries to achieve zero isostatic anomalies. Thus, the Bou-
guer anomalies replace the attraction of the compensating
masses. The harmonic analysis of the Bouguer anomalies is

thus a combination of the harmonic analysis of the topo-
graphic potential and the already existed global (free-air) refer-
ence models.

A practical computation of the isotropic isostatic
response function has been carried out using EGM96 model
(complete to degree and order 360) and GPM98CR (complete
to degree and order 540) representing the geopotential

earth model. TUG87 (300 � 300 resolution) and TBASE

(200 � 200 and 300 � 300 resolutions) digital height models have
been used for computing the harmonic coefficients of the

topography and of the topographic potential. The results show
that the normalized isostatic response functions and the Kelvin
function kei x give nearly the same values. This shows that the
isostatic behaviour of the earth’s crust computed by direct

isostasy using the most realistic isostatic model (modified
Vening Meinesz isostatic model with Kelvin function kei x as
the exact bending curve) matches the isostatic behaviour of

the earth’s crust derived by inverse isostasy.
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