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Abstract Many studies have been published concerning classification techniques of seabed sur-

faces using single beam, multibeam, and side scan sonars, while few paid attentions to classify

sub-bottom layers using a non-linear Sub-Bottom Profiler (SBP). Non-linear SBP is known for

its high resolution images due to the very short pulse length and aperture angle for high and low

frequencies. This research is devoted to develop an energy based model that automatically charac-

terizes the layered sediment types as a contribution step toward ‘‘what lies where in 3D?”. Since the

grain size is a function of the reflection coefficient, the main task is to compute the reflection coef-

ficients where high impedance contrast is observed. The developed model extends the energy based

surface model (Van Walree et al., 2006) to account for returns reflection of sub-layers where the

reflection coefficients are computed sequentially after estimating the geo-acoustic parameters of

the previous layer. The validation of the results depended on the model stability. However, physical

core samples are still in favor to confirm the results. The model showed consistent stable results that

agreed with the core samples knowledge of the studied area. The research concluded that the

extended model approximates the reflection coefficient values and will be very promising if volume

scatters and multiple reflections are included.
� 2016 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

The increased human marine activities in the offshore environ-
ment, such as wind farms, dredging operations, studies of
marine geology and morphology have led to an imperative

demand for accurate seafloor maps. These applications require
knowledge of the seafloor topography and detailed informa-
tion about the seafloor composition, both at the sediment sur-

face and in deeper layers. The conventional approach to obtain
information about the seafloor composition is to take physical
sediment samples. This procedure is extremely expensive and

time consuming. A much more attractive technique, which
provides high spatial coverage at limited costs within short
time, is acoustic remote sensing. Such technique has been suc-
cessfully developed that classifies the seabed surfaces using sin-

gle beam, multibeam, and side scan sonars (Van Walree et al.,
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2006; Sternlicht Daniel and De Moustier Christian, 2003;
Eleftherakis etal., 2012; Applied Physics Laboratory, 1994).

Underwater acoustic devices operate at frequencies between

10 Hz and 1 MHz. Frequencies lower than 10 Hz will pene-
trate deep into the seabed, whereas frequencies above 1 MHz
get absorbed very quickly. Most systems used today for seabed

mapping make use of a single acoustic frequency because dif-
ferent frequencies will require sophisticated sensor to capture
the desired information (Anderson et al., 2008). Classical

Sub-Bottom Profilers are single frequency sonars that aim to
explore the first layers of sediments below the seafloor over a
thickness commonly reaching several tens of meters. Sediment
structure is directly observed by measuring the elapsed time of

the received reflections of the acoustic energy when it encoun-
ters boundaries of different sediment layers.

Parametric SBPs are very compact transducers that exploit

signal interference process to construct low frequency signal
with a very narrow beam width ±2�. The consequence of such
configuration is a very small footprint about 7% of water

depth i.e. high spatial resolution. Basically, the transducer
transmits two primary simultaneous high frequency signals
that are slightly different e.g. 100–95 kHz at high sound pres-

sure. Due to the high pressure, the sound propagation will be
non-linear; water sound velocity is a function of water pres-
sure, temperature, salinity, and density (Urick, 1982). The
higher sound amplitudes will move faster than lower sound

amplitudes. As a consequence, a number of secondary frequen-
cies are produced such as harmonics, sums and difference of
the emitted signals e.g. 100–95 = 5 kHz.

Acoustic remote sensing classification methods are numer-
ous but can fall under two general categories: phenomenolog-
ical approach and model based approach. Phenomenological

approach is based on grouping echo like features together
and labeling each group using the acquired ground truth sam-
ples. The aim is to extract some properties from the measured

seabed echo that will allow the seabed to be classified into rel-
atively homogeneous categories. Classifying the data in this
way allows areas with similar seabed properties to be grouped
together. The selection of grouping can be based on the simi-

larity of amplitudes, skewness, energies, etc. This approach
used the single beam echo sounder SBES echoes in Orłowski
(1984) by grouping the square root ratio of the energy of sec-

ond bottom echo to the first bottom echo. For the same device,
Chivers et al. (1990), Heald and Pace (1996) and Siwabessy
et al. (1999) grouped the energy summation of the first seabed

echo tail and used it to represent the seabed roughness. Multi-
beam and side scan sonars echoes were also used by Preston
et al. (2004) where the selective features were Mean, standard
deviation, higher order moments, amplitude quintiles his-

togram and power spectral ratio. On the other hand, Hughes
Clarke et al. (1997) exploited the Seabed backscatter strength.

Model based approach is a mathematical model to seek

quantitative estimates of the geo-acoustic parameters that are
incorporated in the model. This is achieved by modeling the
received signal and optimizes its geo-acoustic parameters to

match the acquired signal. Knowledge of transmitted pulse
shape, duration, and power is needed. The unknown geo-
acoustic parameters are estimated by minimizing the mismatch

between the acquired and modeled acoustic signals. The
advantage of this approach is that, in principle no independent
measurements ‘ground-truth’ of the actual seabed is required.
However, the ground truth is still recommended to assess the
classification results. This approach is more complicated than
the phenomenological approach since it requires full under-
standing of the physical process that the signal encounters.
2. Data description

The data consist of four sets of measurements that cover four

areas characterized by various sediment types. The data used
in this research were acquired by ‘Innomar’ in January 2007
in the Baltic Sea near Rostock. An SES-2000 standard SBP

system is used for acquiring the data with filters set to a max-
imum bandwidth. The filter settings are experimental to ensure
that the received signal is almost unchanged which conse-

quently caused high noise level. Therefore, a filtering bandpass
filter process is necessary to remove the presence of noise to
increase the level of confidence within the analysis procedure.

Each area is acquired by four frequencies, the primary high
frequency (±100 kHz), and three secondary low frequencies
±(5, 10, 15 kHz). Fig. 1 illustrates the echo prints of the four
areas observed by the low 15 kHz. The first and second data-

sets, known as ‘area 1’ and ‘area 2’ have a survey length of
112 m and 128.5 m respectively with an average water depth
of 20.5 m. The third survey line ‘area 3’ is approximately

118 m, with a starting water depth of 14 m that gradually
increases to 15.5 m. Finally, ‘area 4’ is acquired over a survey
length of 105.5 m and average water depth of 13 m. The acous-

tic survey for each survey is carried out at approximate speed
of 10 km/h with ping rate of six pings/s.

A number of core samples were collected as ground truth.
Unfortunately, no laboratory results were presented; however,

the visual inspection indicated that ‘area 1’ and ‘area 2’ at the
seabed surface are dominated by soft sediments, e.g. mud.
‘Area 3’ is dominated by medium mean grain size, e.g. sand,

and ‘area 4’ is characterized by rough sediment such as pebble
or rocks. The analysis done in this research will exploit the
prior knowledge of sediment description as a guiding reference

for the consistency of the classification results.
3. Time domain energy model

The nonlinear SBP can be considered as hybrid sonar system
of SBES and classical SBP where the high frequency is also
exploited to measure accurate seabed depth. As the transmit-

ted acoustic signal travels downwards through the water col-
umn with a relative large beam width ±30� such as in the
case of SBES, the received energy will be a composite of reflec-
tions and backscatters from the seabed surface. On the con-

trary, nonlinear SBP operates with a very narrow beam
width ±1.8�. This geometric configuration makes the received
echo a function of the impedance contrast rather than interface

micro roughness; ‘SBP sees only echoes that come perpendicu-
lar from the seabed with very narrow beam width’ (Lurton,
2002).

3.1. Seabed surface classification

The physics based model (Van Walree et al., 2006) describes

the received echo energy as a function of the transmitted pulse
energy, water column losses and seabed reflection. The aim
here is to infer the sediment type from its reflection coefficient



Figure 1 Echo print of sample profiler. The blue layers indicate the positions of the dataset.
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by comparing it to the modeled reflection coefficient. This will

be verified by computing the amount of energy received from a
time window. Thus, the reflection coefficient can be estimated
and correlated with Hamilton et al.’s (1982) sediment reflection

coefficients (Garrison and Francois, 1879). Since the reflection
coefficient is a function of sediment impedance, the results can
then be inverted to the corresponding mean grain size. The
reflection coefficient of measurements starts by extracting the

signals from recordings. Then their envelopes are squared
and integrated to yield echo energies. The received echo energy
ERX at a given direction ‘receiver interface’ and pulse duration

is related to the transmitted pulse ETX through:

ERX ¼ eð�4aHÞ

4H2
R2ETX ð1Þ

where H denotes the distance between the echo sounder and
the seafloor determined from the echo return time and the
sound speed, and R is the reflection coefficient of the seabed
surface. The energy is corrected for the spherical spreading fac-

tor 1=4H2 and the water absorption e�4aH. Water absorption is

the exponential form that computes the absorption rate pro-
portional to water depth, where a is the water absorption coef-
ficient estimated from Francois and Garrison formulas

(Hamilton et al., 1982) and converted to 1/m. From Eq. (1),
the expression can now be inverted and the corresponding
reflection coefficient of measurements can easily be estimated.
The next step is to estimate the modeled reflection coefficients

that correspond to the assumed sediment types (1u till 9u).
This can be achieved via the sediment impedance, since it is
a function of mean grain size Z(Mz)

00. The mean grain size

can be substituted by its geo-acoustic properties described
via Bachman’s regression equations that relate the sediment
velocity and density to the mean grain size through

(Siwabessy et al., 1999)

Cs ¼ 1952� 86:3Mz þ 4:14M2
z ð2Þ

qs ¼ 2380� 172:5Mz þ 6:89M2
z ð3Þ

By combining Eqs. (2) and (3), sediment impedance Zs (qs
cs) can easily be estimated. One should note that although sed-

iment impedance is uniquely identified as a function of the
mean grain size, mean grain size as function of impedance
Mz(Z) gives various solutions. The link between the mean

grain size and the echo energy is established via the Rayleigh
reflection coefficient as follows:
R ¼ ðZs � ZwÞ=ðZs þ ZwÞ ð4Þ
The straightforward Eqs. (1)–(4) suffice to convert echo

energies into mean grain size by equating the acoustic reflec-
tion coefficient in Eq. (1) to the model reflection coefficient
in Eq. (4), provided that a calibration factor is available. Since

the energy of the received echo ERX is subject to an arbitrary
scaling factor, a calibration factor C is required to calculate
the R accordingly. Therefore, Eq. (1) can be rewritten as

follows:

R ¼ 2CH

eð�2aHÞ
ffiffiffiffiffiffiffiffi
ERX

p
ð5Þ

where C ¼ 1=
ffiffiffiffiffiffiffiffi
ETX

p
With the prior knowledge of the general description of each

area, the corresponding Rayleigh reflection coefficient at
water–sediment surface can be determined using Hamilton
and Bachman’s Eqs. (2) and (3). The N calibration samples
are associated with averaged mean grain size Mz that corre-

sponds to its zones typically Mz = 9u for fines (area 1),
Mz = 8u for (area 2), Mz = 3u for coarse (area 3), and
Mz = 0.5u for very coarse (area 4). The number of calibration

factors Ci per area can now be computed by matching the
acoustic reflection coefficient of Eq. (5) to the expected Ray-
leigh reflection coefficient. By taking the root mean square of

the Ci of each area we end up with four calibration factors.
The calibration factors of area 1, 2 and 3 were very similar
and slightly different at area 4 which could be due the high

stochastic behavior of rough surface. Nevertheless, the four
calibration factors are averaged and used for the entire dataset.

With the prior knowledge of the general description of each
area, the corresponding Rayleigh reflection coefficient at

water–sediment surface can be determined using Hamilton
and Bachman’s Eqs. (2) and (3). The N calibration samples
are associated with averaged mean grain size Mz that corre-

sponds to its zones typically Mz = 9u for fines (area 1),
Mz = 8u for (area 2), Mz = 3u for coarse (area 3), and
Mz = �0.5u for very coarse (area 4). The number of calibra-

tion factors Ci per area can now be computed by matching the
acoustic reflection coefficient of Eq. (5) to the expected Ray-
leigh reflection coefficient. By taking the root mean square of

the Ci of each area we end up with four calibration factors.
The calibration factors of area 1, 2 and 3 were very similar
and slightly different at area 4 which could be due the high
stochastic behavior of rough surface. Nevertheless, for the sake



Figure 2 High frequency 100 kHz classification result using

energy based model ‘‘Black solid” and APL model ‘‘Cyan solid”.

The vertical axis presents the main grain size. The horizontal axis

presents the four areas in a sequential order area 1 = stack (1–17),

area 2 = stack (18–35), area 3 = stack (36–53), and area

4 = stack (54–72).

Figure 3 Theoretical sediment layer structure (Guillon and

Lurton, 2001).

Table 1 Sediment absorption coefficients (Hamilton et al.,

1982).

Sediment type Mz (/) q (kg/m3) c (m/s) a (dB/k)

Clay 9 1.200 1.470 0.08

Silty clay 8 1.300 1.485 0.10

Clayey silt 7 1.500 1.515 0.15

Sand-silt–clay 6 1.600 1.560 0.20

Sand-silt 5 1.700 1.605 1.00

Silty sand 4 1.800 1.650 1.10

Very fine sand 3 1.900 1.680 1.00

Fine sand 2 1.950 1.725 0.80

Coarse sand 1 2.000 1.800 0.90

Table 2 Required variables to be estimated for nth layer.

Parameter Number of required parameters

ETX 1

Attenuation N + 1

Transmission coefficient 2 N

Figure 4 Physical reflection model (Caulfield and Yim, 1983).
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of consistency, the four calibration factors are averaged and
used for the entire dataset.

The classification result as main grain size is shown in Fig. 2
in solid black, overlaid with classification using APL model
(Applied Physics Laboratory, 1994) in cyan. The model was

originally developed to simulate the SBES system that does
account for backscatters. As depicted in Fig. 2, both results
have a general agreement. In fact, the energy based model is

more stable than the APL model. Visually, the APL classifica-
tion at ‘area 1’ and ‘area 2’ has a more stochastic than at ‘area
3’ and ‘area 4’. This comes from the contribution of backscat-
ter; soft sediments have larger backscatter component than at

rough sediments.

3.2. Sub-bottom classification

In this section, the low frequency 15 kHz echoes are analyzed to
classify the sub bottom layers. Eq. (1) is only applicable for high
frequency where the reflection component dominates the full
echo profile. The low frequency is composed of multiple reflec-
tions from the deeper sediment layers. Thus, the energy model
has to be extended to account for the further physical processes

of layering absorptions, transmissions and reflections.
Consider a transmitted low frequency pulse emitted perpen-

dicular toward a fluid dissipative sedimentary layer of thick-

ness h and split into n elementary layers as in Fig. 3. Each
layer l is characterized by its sound speed Cl, density ql, atten-
uation coefficient al, and thickness dl. During the travel time in

the water column, the pulse gets weaken by the water absorp-
tion and spherical spread. Afterward the pulse encounters the
first reflection at the water-seabed interface which is the high-

est reflection component due to the high impedance value. The
remaining energy will penetrate inside the sediment layer with
a transmission coefficient of TWS1 and subjected to a sec-
ondary spherical loss limited to the layer thickness dl and its



Figure 5 From top to bottom, sample size = 1 pulse width, 2 pulse width, and 4 times the pulse width.
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corresponding sediment absorption. The absorption losses of
the first layer should be estimated via the prior knowledge of
the sediment type as proposed in the previous section or by

any proper mean. The absorption coefficient of the first layer
is estimated in Table 1 by the absorption coefficient in marine
sediments equation:
a ¼ k � fn ð6Þ
where linear frequency dependent attenuation is considered,
k= constant that depends on sediment type, f = transmitted
frequency, and n = exponent of frequency dependence. Most
authors support linear frequency dependent attenuation which



Figure 6 Comparison between sample size influences on the reflection coefficient estimates. (a) The received signal (area 1–15 kHz). (b)

Estimated reflections, window size set two times the pulse length. (c) Estimated reflections, window size set to four times the pulse length.
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is also followed in the current research by using Hamilton and
Bachman’s absorption values shown in Table 1. There is a

variety of sediment absorption units that are commonly used
in the underwater acoustics and marine seismology communi-
ties. Most common is the decibel per unit meter, or decibel per

wavelength depending on the used propagation model. In
Table 1 the acoustic attenuation al is expressed in decibel per
wavelength so it can be used with any frequency. In the used
model, the attenuation coefficient was converted to dB/m to

agree with the units of the extended equation.
Once the pulse meets the second layer, a new reflected

energy is born which is the impedance ratio between the first

layer and second layer, subjected to attenuations of traveling
way back to the receiver, which is the same as the transmission
attenuations. After deducing the second reflection coefficient,

the unknown impedance of the second layer is inversely esti-
mated. The penetrated energy into the second layer will
encounter the same physical processes until the energy van-

ishes or is completely reflected by a solid layer. The mathemat-
ical description of the mentioned process for two medium
interfaces ‘‘water – 1st sediment layer” and ‘‘1st sediment
layer–2nd sediment layer” is described through the following

equation:
ERX ¼ ETX

eð�4/wHÞ

4H2

� �
T2

ws1

eð�4/s1d1Þ

4d21

 !
R2

s1s2T
2
sw1 ð7Þ

where as1 the acoustic attenuation due to sediment absorption

at the first layer, d1 is the thickness of the first layer, and
Tws1 ¼ 1þ Rws1 is the transmitted energy coefficient from the

water–sediment interface. The reflection coefficient at the
boundary of the first and second layer is denoted by Rs1s2,
and Ts1w ¼ Tws1 is the transmitted energy coefficient at sedi-

ment–water interface. The number of required parameters in
the general expression depends on the number of layers (N).
Table 2 shows the required number of parameters in order
to compute the reflection coefficient at the corresponding

layer.

3.3. Reflection calculation versus time

Fig. 4 illustrates a waveform of a shallow sub-bottom record
with water depth travel time tw and sample window dt. The
sample window size is a very crucial factor to calculate proper

and stable sequential reflection coefficients. A very short sam-
ple window will not capture the full reflected energy that rep-
resents the impedance contrast, while too large sample window



Figure 7a Raster plots of the estimated reflection coefficients at the first and second study areas.
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will sum up multiple reflected energies of several layers. As a
result the model will easily converge to improper reflection val-

ues and imbalance the full process. The principle of choosing
proper sample window will be investigated in the next section.
For now, the size of the sample window is chosen to be once or

twice the transmitted pulse length as will be shown in the next
section. The first reflected energy starts at tw followed by N
subsections of energy chunks S(dt1), S(dt2) . . . S(dtn). The

energy profile versus time for each layer is described through
the following equation:

EðtnÞ ¼
Xt2
t¼t1

ðSðtÞÞ2 � dti ð8Þ

where:

t1 ¼ tw þPn�1
i¼1 dtn

t2 ¼ t1 þ dtn
tw = water depth travel time.
dtn = sample window of nth subsection.
3.4. Sample window size

The size of the sampling window is very crucial for the estima-
tion of the local reflection coefficient. Basically too short sam-
ple window will not capture the correct energy that represents

the desired local layer, while too large sample window will
overestimate the reflection coefficient as it will overlap with
the energy of the next layer. Keep in mind that calculating

reflections coefficient versus depth is only valid when sec-
ondary reflections of the transmitted pulses are not located
within the sampling window of the first arrival pulse. In order
to evaluate this, a power spectrum analysis method is applied

on two sequential sample windows. The method is basically
inferred from the broadly used approach ‘spectral ratio
method’ to estimate sediment absorption coefficients within

homogeneous layer (Theuillon et al., 2008). It is based on
the analysis of the frequency content of propagated acoustic
waves. It is assumed that if the power spectrum of the second



Figure 7b Raster plots of the estimated reflection coefficients at the third and fourth study areas.
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sample window is the same or less than the power spectrum of
the first sample window then we are at the same sediment

layer. The power spectrum ratio of two sequential sample win-
dows is depicted in Fig. 5 for 1, 2 and 4 times the transmitted
pulse width. For the one time the pulse width, the spectrum

profile was too coarse and difficult to compare. The two times
the pulse width improved the spectral resolution and the com-
parison was applicable. Although the four times pulse width

had the best spectral resolution, the comparison was not appli-
cable since the sample window overlaps multiple reflections
which unbalanced the time domain reflections.

The influence of the sample size selection on the reflection

coefficients versus depth is illustrated in Fig. 6. In Fig. 6b,
for a sample size equal to two times the pulse length, the reflec-
tion coefficients are consistent with the trend of the received
signal. This behavior cannot be captured when the sample win-
dow was set to four times the band width as shown in Fig. 6c.

4. Classification results and discussion

Prior to any analysis, noise filtering and heave corrections are

two essential steps to treat the stochastic behavior of the acquired
dataset. The noise filteringwas carried out by bandpass filter with
center frequency similar to the transmitted frequency and proper

bandwidth to conserve the signal shape properties. Although the
data were heave compensated according to the values recorded
from the heave sensor, some small heave variations remained.

Basically, the heave effect causes stochastic variation in the echo
shape, amplitude and time travel over consecutive pings. This
behavior is removed by averaging a proper number of consecu-



Seabed sub-bottom sediment classification 95
tive pings to preserve its consistency. The group size was selected
via the average highly cross correlated profiles; in the current
research there were 15 pings.

4.1. Classification results

The classification results are plotted in Figs. 7a and 7b in terms

of reflections. Reflections can easily be converted by empiri-
cally estimating the C value in Eq. (5). In general, the classifi-
cation result in terms of reflection strength shows visual

agreement with raw dataset. The surface classifications also
agreed with the general discretion of the acquired areas.

4.2. Discussion

The extended classification model is an approximate estimate
in the energy and time domain. For the energy domain multi-
ple reflections were neglected. Multiple reflections can occur

when a reflected signal is trapped between two layers ‘i.e.
delayed’ and added to reflections that are encountered from
deeper layers ‘i.e. synchronized in time’. In this process, the

received echo will be a component of amplitudes ‘e.g. destruc-
tive and constructive’ which will not represent the true sedi-
ment layer and consequently will degrade the reflection

coefficient results. Volume backscatter is also important to
be considered especially at thick soft sediment layers. Regard-
ing the time domain, the windowing sample can be replaced by
cross correlation to compute distinct layer depths with homo-

geneous sediment characteristics.

5. Conclusion

Remote classification of sub-bottom layers is vital of impor-
tance for many engineering and marine applications. Physics
based models are of high demand to save the effort of bore-

holes investigations. An energy model initially implemented
for surface classification using high frequency signals was
extended to account for sub-layer interactions using low fre-

quency echoes. Echoes come from sub-layers by a series of
reflections at sub layer interface with high impedance. The
model estimates the reflection coefficients inversely via trans-

mitted and received echo energies. The model incorporates a
number of losses and physical interactions such as spherical
spread losses, water and sediment attenuations, reflections
and refractions coefficients. The energy values are estimated

in the time domain via sequential time window. The size of
the time window is crucial factor on the model stability.

The classification result agreed with the visual inspection of

the area Corse samples. Unfortunately, no laboratory results
were available to evaluate the classification quantitatively.
The model is very sensitive to the presence of errors. The errors

might appear from absorption factors that are deviated from
the true value, or even misclassified layers. These errors are
acceptable at the first couple of layers, and can increase dras-

tically by increasing the layer index.
Resolution is a crucial issue, if low resolution is used ‘i.e.

large sample window’, the reflection predictions will be inaccu-
rate, by missing intermediate layers. This inaccuracy will

behave as an error which will propagate within the second iter-
ation and will influence the reflection predictions of the follow-
ing sample windows. Therefore, a proper sample window has
to be chosen to capture the full reflected energy from the
desired layer and without overlapping with secondary
reflections.

The extended model is an approximate estimate that can be
enhanced to include confined reflections and volume backscat-
ter of thick soft sediments. The energy simulation can be

enhanced by computing correct layer depths to replace the
sampling window method.
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