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A B S T R A C T

We suggest a new perturbed form of the quantum potential and investigate the possible solutions of Schrodinger
equation. The new form can be written as a finite or infinite continued fraction. a comparison has been given
between the continued fractional potential and the non-perturbed potential. We suggest the validity of this
continued fractional quantum form in some quantum systems. As the order of the continued fraction increases
the difference between the perturbed and the ordinary potentials decreases. The physically acceptable solutions
critically depend on the values of the continued fraction coefficients αi.

1. Introduction

The generalized continued fraction is an expression of the form
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where all the bi are equal to 1 and all the ai are positive integers in a
simple continued fraction. If the iteration (recursion) is terminated after
finitely many steps then the continued fraction is said to be finite
(terminated). The integers ai are called the coefficients of the continued
fraction. For some history about the continued fractions see (Balzs
Knya, 2000).

The continued fraction appears in many contexts in mathematical
physics due to its available continuously increasing computational
power. continued fraction expansion of special functions (hypergeo-
metric functions and orthogonal polynomials) and solutions of three-
term recurrence relations represent important applications. Several al-
gorithms to compute the n-th approximant of a continued fraction have
been described in Balzs Knya (2000) (see Figs. 1–6).

The continued fraction technique has been used in the solution of
Schrodinger equation (Biswas and Vidhani, 1973; Mignaco and
Miraglia, 1977), the slow neutron scattering calculations (Sears, 1969;
Lovesey, 1974) and in strong interaction theory (Zinn-Justin, 1971). In
Hnggi et al. (1978), the continued fraction techniques has been used to
study the solution of some general physical problems in the field of
scattering theory and statistical mechanics. The continued fractions
play a role in the study of fractals and dynamical systems (Falconer,

2003; Smeets, 2010). The appearance of continued fraction in pertur-
bation theory has been studied by many authors (Turchi, 1987;
Scofield, 1974; Reid, 1967; Cizek and Vrscay, 1984; Swain, 2001).

2. Schrodinger equation with continued fraction potential

The Schrodinger equation for a particle of mass m in a potential
V r( ) may be written
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with the potential =V r r( ) 1/ .
We suppose a perturbed potential in the form of continued fraction

as
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For one dimension, Eq. (2) is
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An analytical solution of (4) could be written in terms of confluent
Heun function HC as
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This analytical solution has been obtained using Maple software.
Here I denotes the integral
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This integral can be evaluated numerically. To investigate the nu-
merical solution of (2) we need to know what values of α1 and α2 lead to
a physically acceptable solution i.e. a wave solution.

We set the factor h
m2

to 1 for simplicity. This does not change the
basic structure of the wavefunctions and their energy when properly
scaled. We use the following initial conditions for the wave function
and its derivative

= =ψ ψ(0) 0 , ̀(0) 1 (7)

A numerical investigation is always possible to the higher order
continued fractional potentials. For example, the solution of;
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Fig. 1. The solution of Schrodinger equation for continued fraction potential (4) (solid
line) and for the r1/ potential (dash-dot line). = =α α 11 2 .

Fig. 2. The solution of Schrodinger equation for continued fraction potential (4) (solid
line) and for the r1/ potential (dash-dot line). = = −α α 101 2 5.

Fig. 3. The solution of Schrodinger Eq. (4) for continued fraction potential for
= =α α 101 2 2.

Fig. 4. The solution of Schrodinger Eq. (4) for continued fraction potential goes mono-
tonically for some values of the parameters. Here = =α α 101 2 3.
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will also be tested numerically to check the possibility of the wave
solution. In the following section we investigate and plot the solutions
of Eqs. (4), (8) and (9) for different values of the parameters αi. We
compare all the continued fraction solutions with the ordinary solution
of the potential =V r r( ) 1/ .

3. Numerical results

See Table 1.

4. Conclusion

in this paper, the continued fraction concept has been used to per-
turb the potential in Schrodinger equation and the possibility of phy-
sically valid solutions has been investigated. This perturbation of the
potential is expected to be important in some quantum systems. As the
order of the continued fraction increases the difference between the
perturbed and the ordinary potentials decreases. we have investigated
many values of the continued fraction coefficients αi where the solu-
tions have been found to be critically depend on the values of these
coefficients.
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Fig. 5. The solution of Schrodinger Eq. (8) for the continued fraction potential (solid line)
and for the r1/ potential (dash-dot line). = = =α α α 11 2 3 .

Fig. 6. The solution of Schrodinger Eq. (9) for the continued fraction potential (solid line)
and for the r1/ potential (dash-dot line). =α 1i .

Table 1
ψ just increases monotonically for some values of α1 and α2.

Parameter value

α1 α2 Wave solution?

1 1 Yes
0.1 0.1 Yes

−10 2 −10 2 Yes
−10 5 −10 5 Yes

10.0 10.0 Yes
50.0 50.0 Yes
102 102 Yes

103 103 No

−103 −103 No

− −10 5 − −10 5 Yes

− −10 2 − −10 2 No

− −10 3 − −10 3 Yes
−1 −1 No
105 105 No

106 106 No

105 1 No
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